

Windows®

PowerShell

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Tyson Kopczynski

Windows® PowerShell Unleashed
Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32953-0

Library of Congress Cataloging-in-Publication Data

Kopczynski, Tyson.
Microsoft PowerShell unleashed / Tyson Kopczynski.

p. cm.
ISBN 0-672-32953-0

1. Microsoft Windows (Computer file) 2. Operating systems (Computers) I. Title.

QA76.76.O63K66 2007
005.4’46—dc22

2007008894
Printed in the United States of America
First Printing:
10 09 08 07 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Gina Kanouse

Project Editor
George E. Nedeff

Copy Editor
Lisa M. Lord

Senior Indexer
Cheryl Lenser

Proofreader
Water Crest
Publishing

Contributing Authors
Pete Handley, Mark
Weinhardt, and
Josh Tolle

Technical Editor
Pawam Bhardwaj

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Page Layout
Jake McFarland
Nonie Ratcliff

http://www.samspublishing.com/safarienabled

Contents at a Glance

Introduction . 1

Part I Introduction to PowerShell

1 Introduction to Shells and PowerShell . 7

2 PowerShell Basics . 19

3 PowerShell: A More In-Depth Look . 57

4 Code Signing. 93

5 PowerShell Scripting Best Practices . 107

Part II Translating Your Existing Knowledge into PowerShell

6 PowerShell and the File System. 125

7 PowerShell and the Registry . 157

8 PowerShell and WMI. 183

9 PowerShell and Active Directory . 205

Part III Using PowerShell to Meet Your Automation Needs

10 Using PowerShell in the Real-World. 235

11 Using PowerShell to Manage Exchange . 261

Index . 295

Table of Contents

Introduction 1

Part I Introduction to PowerShell

1 Introduction to Shells and PowerShell 7

What Is a Shell?. 7
Basic Shell Use. 8
Basic Shell Scripts . 10

A Shell History . 14
Enter PowerShell . 16
Summary . 17

2 PowerShell Basics 19

Introduction . 19
Getting Started . 19
Accessing PowerShell . 21
Understanding the Command-Line Interface (CLI) . 22

Navigating the CLI . 24
PowerShell Command Types . 26
Calling PowerShell from Other Shells . 30

Understanding cmdlets . 33
Common Parameters . 34

Useful cmdlets . 35
Get-Help . 35
Get-Command. 38

Expressions . 40
Understanding Variables . 41

Built-in Variables . 42
Understanding Aliases. 45

Discovering Alias cmdlets . 47
Creating Persistent Aliases. 48

Escape Sequences . 49
Understanding Scopes. 50

Global . 50
Local . 51
Script . 51

Private. 52
Your First Script . 53
Summary . 56

3 PowerShell: A More In-Depth Look 57

Introduction . 57
Object Based . 57

Understanding the Pipeline. 58
.NET Framework Tips . 60

Understanding Providers . 72
Accessing Drives and Data . 74
Mounting a Drive. 77

Understanding Errors. 78
Error Handling . 80

Method One: cmdlet Preferences. 80
Method Two: Trapping Errors . 81
Method Three: The Throw Keyword . 83

PowerShell Profiles . 84
The All Users Profile . 84
The All Users Host-Specific Profile . 84
The Current User’s Profile . 85
The Current User’s Host-Specific Profile. 85

Understanding Security . 85
Execution Policies . 86
Setting the Execution Policy. 88
Additional Security Measures. 91

The PowerShell Language . 91
Summary . 91

4 Code Signing 93

Introduction . 93
What Is Code Signing?. 94
Obtaining a Code-Signing Certificate. 95

Method One: Self-Signed Certificate . 96
Method Two: CA Signed Certificate . 97
The PVK Digital Certificate Files Importer. 99

Signing PowerShell Scripts . 100
Verifying Digital Signatures . 101
Signed Code Distribution. 102

Enterprise Code Distribution . 105
Public Code Distribution. 105

Summary . 106

Table of Contents v

5 PowerShell Scripting Best Practices 107

Introduction. 107
Script Development . 107

Treat Scripting Projects as Actual Projects. 108
Use a Development Life Cycle Model . 108
Design and Prototype Your Scripts by Using Pseudocode 109
Gather Script Requirements Effectively . 109
Don’t Develop Scripts in a Production Environment. 109
Test, Test, Test . 110
Keep Your Scripts Professional. 110

Script Design . 110
Put Configuration Information at the Beginning of Script 110
Use Comments. 111
Avoid Hard-Coding Configuration Information . 111
When Necessary, Use Variables in One Place . 112
Provide Instructions . 112
Perform Validity Checking on Required Parameters . 113
Make Scripts and Functions Reusable . 114
Use Descriptive Names Rather Than Aliases. 114
Provide Status Information for Script Users . 115
Use the WhatIf and Confirm Parameters. 115

Script Security. 117
Digitally Sign PowerShell Scripts and Configuration Files 117
Never Set Execution Policies to Unrestricted. 118
Try to Run Scripts with the Minimum Required Rights. 118

Standards for Scripting . 118
This Book’s Scripting Standards . 119

Summary . 120

Part II Translating Your Existing Knowledge into PowerShell

6 PowerShell and the File System 125

Introduction. 125
File System Management in WSH and PowerShell . 125

Working with Drives . 126
Working with Folders . 126
Working with Files. 127

Working with Permissions . 128
Setting Permissions with SubInACL . 128
Setting Permissions in PowerShell. 131

From VBScript to PowerShell . 136
The ProvisionWebFolders.wsf Script . 136

Microsoft PowerShell Unleashedvi

Table of Contents vii

The ProvisionWebFolders.ps1 Script . 146
Summary . 155

7 PowerShell and the Registry 157

Introduction. 157
Registry Management in WSH and PowerShell . 157
From VBScript to PowerShell . 161

The LibraryRegistry.vbs Script . 162
The LibraryRegistry.ps1 Script . 169

Summary . 181

8 PowerShell and WMI 183

Introduction. 183
Comparing WMI Usage Between WSH and PowerShell . 183

Using WMI in WSH . 184
Using WMI in PowerShell . 185
Type Accelerators. 187

From VBScript to PowerShell . 191
The MonitorMSVS.wsf Script . 191
The MonitorMSVS.ps1 Script . 197

Summary . 203

9 PowerShell and Active Directory 205

Introduction. 205
Comparing ADSI Usage Between WSH and PowerShell . 205

Using ADSI in WSH . 207
Using ADSI with PowerShell . 208
Retrieving Object Information . 209
Creating an Object. 210

From VBScript to PowerShell . 212
The IsGroupMember.wsf Script . 212
The IsGroupMember.ps1 Script . 222

Summary . 232

Part III Using PowerShell to Meet Your Automation Needs

10 Using PowerShell in the Real-World 235

The PSShell.ps1 Script . 235
Component One: Shell Replacement. 236
Component Two: PSShell.exe. 239
Component Three: PSShell.ps1. 240
Putting It All Together . 245

The ChangeLocalAdminPassword.ps1 Script . 246
Summary . 259

11 Using PowerShell to Manage Exchange 261

Introduction. 261
The Exchange ManagementShell (EMS) . 261

It’s Just a Snap-in. 262
The GetDatabaseSizeReport.ps1 Script. 266
The GetEvent1221Info.ps1 Script . 275
The ProvisionExchangeUsers.ps1 Script . 285
Summary . 292

Index 295

Microsoft PowerShell Unleashedviii

About the Author

With more than nine years of experience in the information technology sector, Tyson
Kopczynski has become a specialist in Active Directory, Group Policy, Windows scripting,
Windows Rights Management Services, PKI, and information technology security prac-
tices. Tyson has been a contributing author for such books as Microsoft Internet Security and
Acceleration (ISA) Server 2004 Unleashed and Microsoft Windows Server 2003 Unleashed (R2
Edition). In addition, he has written detailed technical papers and guides covering the
various in-the-field technologies he works with extensively. As a consultant at Convergent
Computing (CCO), Tyson has been able to work with the next generation of Microsoft
technologies since their inception and played a key role in expanding scripting and devel-
opment practices at CCO. Tyson also holds the SANS Security Essentials Certification
(GSEC), Microsoft Certified Systems Engineer (MCSE) Security certification, CompTIA
Security+ certification, and SANS Certified Incident Handler (GCIH) certification.

Dedication

I dedicate this book to the love of my life and very understanding
wife (Maiko). Without her support, my continuing pursuit of the

perfect script surely would have ended in disaster by now.

Acknowledgments

The first of many acknowledgments I would like to make starts with Rand Morimoto.
Without his support and guidance, this book would never have gotten off the ground. In
addition, I would like to thank Neil Rowe for giving me a chance to do this book and
overseeing it to fruition. I’m also grateful to my contributing authors, Pete Handley, Mark
Weinhardt, and Josh Tolle, for assisting me with putting the technical aspects of this book
together. To the editing team, Pawam Bhardwaj, George Nedeff, Mark Renfrow, and Lisa
Lord, I’m deeply indebted to you for the fantastic suggestions and your meticulous work
in editing this book. Also, to all my family, friends, and coworkers who have been
wondering if I still exist, I was working on a book, not ignoring you!

Last, but not least, I would like to give a huge thanks to the little turtle (PowerShell) that
lives in the eBay koi pond. During a project there, I spent many lunch hours watching
that little guy and his antics. Although his world was small in size, he obsessively
attempted to explore and understand every micron of it. Keep learning, little guy, as will I!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As a senior acquisitions editor for Sams Publishing, I welcome your comments. You can
e-mail or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, e-mail address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe
Senior Acquisitions Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site
at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in
the Search field to find the page you’re looking for.

www.samspublishing.com

This page intentionally left blank This page intentionally left blank

Introduction

When I first started working on the PowerShell Unleashed
book, I happened to be reading a book on public key infra-
structure (PKI). Although the materials in the book gave
good background and reference information about PKI,
they lacked details on how to apply PKI in an environ-
ment. Applied presentation is a component I have often
wished was included in many technical books. With this
realization, I decided I would try to approach the subject
matter in the PowerShell book in a way different from most
other technical books.

The outcome of this realization is the book you’re now
reading. Although this book contains detailed reference
information about what PowerShell is, I made an effort to
show readers how PowerShell can be applied to meet their
specialized needs. This approach might not be new or
groundbreaking, but I hope it helps you gain a unique
perspective on one of the most impressive Microsoft prod-
ucts to be recently released.

That last statement is by no means free marketing for
Microsoft. The PowerShell team has truly created a shell
that’s enjoyable, easy, fun, and, yes, powerful. I can’t wait
to see what’s in store for the future of PowerShell and what
products will embrace its use.

Who Is This Book’s Intended
Audience?
This Unleashed book is intended for an intermediate level of
systems administrators who have invested time and energy
in learning Windows scripting and want to translate those
skills into PowerShell skills while learning how it can meet
their real-world needs. This book has been written so that
anyone with a scripting background can understand what
PowerShell is and how to use it, but by no means is it
meant to be a complete PowerShell reference. Instead,

think of it as a resource for learning how PowerShell can be applied in your own environ-
ment. Therefore, the structure of this book reflects that focus by including numerous
command examples and working scripts.

How This Book Is Organized
The book is divided into the following three parts:

• Part I, “Introduction to PowerShell”—This part introduces you to what PowerShell is
and how to use it. Topics covered include why PowerShell came into existence,
general use of PowerShell, an in-depth review of code signing, and PowerShell best
practices.

• Part II, “Translating Your Existing Knowledge into PowerShell”—This part dives into a
point-by-point comparison of how existing Windows scripting knowledge can be
translated to learning PowerShell scripting. Topics covered include working with the
Windows file system, Registry, Windows Management Instrumentation (WMI), and
Active Directory Services Interfaces (ADSI). To assist you, examples of performing
automation tasks and working scripts in both VBScript and PowerShell are included.

• Part III, “Using PowerShell to Meet Your Automation Needs”—The goal of this part is to
expand on how PowerShell can be used to manage systems. Topics covered include
using PowerShell to meet security needs, automating changes across numerous
systems, and managing Exchange Server 2007 with PowerShell.

Conventions Used in This Book
Commands, scripts, and anything related to code are presented in a special monospace
computer typeface. Bolding indicates key terms being defined, and italics are used to indi-
cate variables and sometimes for emphasis. Great care has been taken to be consistent in
letter case, naming, and structure, with the goal of making command and script examples
more readable. In addition, you might find instances in which commands or scripts
haven’t been fully optimized. This lack of optimization is for your benefit, as it makes
those code samples more intelligible and follows the practice of writing code for others to
read. For more details about the layout, conventions, and practices used for commands
and scripts in this book, see Chapter 5, “PowerShell Scripting Best Practices.”

Microsoft PowerShell Unleashed2

Other standards used throughout this book are as follows:

Black Code Boxes

Introduction 3

These code boxes contain commands that run in a PowerShell or Bash
shell session.

Gray Code Boxes

These code boxes contain source code from scripts, configuration files, or

other items that aren’t run directly in a shell session.

CAUTION

Cautions alert you to actions that should be avoided.

NOTE

Notes give you additional background information about a topic being discussed.

This page intentionally left blank This page intentionally left blank

PART I

Introduction to
PowerShell

IN THIS PART

CHAPTER 1 Introduction to Shells and PowerShell 7

CHAPTER 2 PowerShell Basics 19

CHAPTER 3 PowerShell: A More In-Depth Look 57

CHAPTER 4 Code Signing 93

CHAPTER 5 PowerShell Scripting Best
Practices 107

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. What Is a Shell?

. A Shell History

. Enter PowerShell

CHAPTER 1

Introduction to Shells
and PowerShell

Shells are a necessity when using operating systems
because they make it possible to perform arbitrary actions
such as traversing the file system, running commands, or
using applications. As such, every computer user has dealt
with a shell by typing commands at a prompt or by click-
ing an icon to start an application. Shells are inescapable
when you’re working on a computer system.

In this chapter, you take a look at what a shell is and see
the power that can be harnessed by interacting with one.
To do this, you walk through some basic shell commands,
and then build a shell script from those basic commands to
see how they can become more powerful via scripting.
Next, you take a brief tour of how shells have evolved over
the past 35 years. Finally, you learn why there was a need
for PowerShell and what its inception means to scripters
and system administrators.

What Is a Shell?
A shell is an interface that allows users to interact with the
operating system. A shell isn’t considered an application
because of its inescapable nature, but it’s the same as any
other process running on a system. The difference between
a shell and an application is that a shell’s purpose is to
allow users to run other applications. In some operating
systems (such as UNIX, Linux, and VMS), the shell is a
command-line interface (CLI); in other operating systems
(such as Windows and Mac OS X), the shell is a graphical
user interface (GUI).

In addition, two types of systems in wide use are often neglected in discussions of shells:
networking equipment and kiosks. Networking equipment usually has a GUI shell (mostly
a Web interface on consumer-grade equipment) or a CLI shell (in commercial-grade
equipment). Kiosks are a whole other animal; because many kiosks are built from applica-
tions running atop a more robust operating system, often kiosk interfaces aren’t shells.
However, if the kiosk is built with an operating system that serves only to run the kiosk,
the interface is accurately described as a shell. Unfortunately, kiosk interfaces continue to
be referred to generically as shells because of the difficulty in explaining the difference to
nontechnical users (which is a virtue that results in the automation of tasks, thereby
increasing the efficiency with which tasks are accomplished as well as the accuracy and
consistency with which tasks are performed).

Both CLI and GUI shells have benefits and drawbacks. For example, most CLI shells allow
powerful command chaining (using commands that feed their output into other
commands for further processing; this is commonly referred to as the pipeline). GUI
shells, however, require commands to be completely self-contained. Furthermore, most
GUI shells are easy to navigate, whereas CLI shells require a preexisting knowledge of the
system to avoid attempting several commands to discern the location and direction to
head in completing an automation task. Your choice of shell depends on what you’re
comfortable with and what’s best suited to perform the task at hand.

Even though GUI shells exist, the term “shell” is used almost exclusively to describe a
command-line environment, not a task you perform with a GUI application, such as
Windows Explorer. Likewise, shell scripting refers to collecting commands normally
entered on the command line or into an executable file.

Basic Shell Use
Many shell commands, such as listing the contents of the current working directory, are
simple. However, shells can quickly become complex when more powerful results are
required.

The following example lists the contents of the current working directory.

CHAPTER 1 Introduction to Shells and PowerShell8

$ ls
apache2 bin etc include lib libexec man sbin share var

However, often seeing just filenames isn’t enough and so a command-line argument
needs to be passed to the command to get more details about the files.

NOTE

If these commands are unfamiliar, don’t worry. They’re here for the sake of illustration,
not to teach you the intricacies of the Bash shell.

The following command gives you more detailed information about each file using a
command-line argument.

What Is a Shell? 9

1

$ ls –l
total 8
drwxr-xr-x 13 root admin 442 Sep 18 20:50 apache2
drwxrwxr-x 57 root admin 1938 Sep 19 22:35 bin
drwxrwxr-x 5 root admin 170 Sep 18 20:50 etc
drwxrwxr-x 30 root admin 1020 Sep 19 22:30 include
drwxrwxr-x 102 root admin 3468 Sep 19 22:30 lib
drwxrwxr-x 3 root admin 102 Sep 18 20:11 libexec
lrwxr-xr-x 1 root admin 9 Sep 18 20:12 man -> share/man
drwxrwxr-x 3 root admin 102 Sep 18 20:11 sbin
drwxrwxr-x 13 root admin 442 Sep 19 22:35 share
drwxrwxr-x 3 root admin 102 Jul 30 21:05 var

Now you need to decide what to do with this information. As you can see, directories are
interspersed with files, making it difficult to tell them apart. If you want to view only
directories, you have to pare down the output by piping the ls command output into the
grep command. In the following example, the output has been filtered to display only
lines starting with the letter d, which signifies that the file is a directory.

$ ls -l | grep '^d'
drwxr-xr-x 13 root admin 442 Sep 18 20:50 apache2
drwxrwxr-x 57 root admin 1938 Sep 19 22:35 bin
drwxrwxr-x 5 root admin 170 Sep 18 20:50 etc
drwxrwxr-x 30 root admin 1020 Sep 19 22:30 include
drwxrwxr-x 102 root admin 3468 Sep 19 22:30 lib
drwxrwxr-x 3 root admin 102 Sep 18 20:11 libexec
drwxrwxr-x 3 root admin 102 Sep 18 20:11 sbin
drwxrwxr-x 13 root admin 442 Sep 19 22:35 share
drwxrwxr-x 3 root admin 102 Jul 30 21:05 var

However, now that you have only directories listed, the other information like date,
permissions, sized, etc. is superfluous because only the directory names are needed. So in
this next example, you use the awk command to print only the last column of output
shown in the previous example.

$ ls -l | grep '^d' | awk '{ print $NF }'
apache2
bin
etc
include
lib
libexec
sbin
share
var

The result is a simple list of directories in the current working directory. This command is
fairly straightforward, but it’s not something you want to type every time you want to see
a list of directories. Instead, we can create an alias or command shortcut for the
command that we just executed.

CHAPTER 1 Introduction to Shells and PowerShell10

$ alias lsd=”ls -l | grep '^d' | awk '{ print \$NF }'”

$ lsd
apache2
bin
etc
include
lib
libexec
sbin
share
var

Then, by using the lsd alias, you can get a list of directories in the current working direc-
tory without having to retype the command from the previous examples.

As you can see, using a CLI shell offers the potential for serious power when you’re
automating simple repetitive tasks.

Basic Shell Scripts
Working in a shell typically consists of typing each command, interpreting the output,
deciding how to put that data to work, and then combining the commands into a single
streamlined process. Anyone who has gone through dozens of files, manually adding a
single line at the end of each one, will agree that scripting makes as much sense as
breathing.

You’ve seen how commands can be chained together in a pipeline to manipulate output
from the preceding command and how a command can be aliased to minimize typing.
Command aliasing is the younger sibling of shell scripting and gives the command line
some of the power of shell scripts. However, shell scripts can harness even more power
than aliases.

Collecting single-line commands and pipelines into files for later execution is a powerful
technique. Putting output into variables for reference later in the script and further
manipulation takes the power to the next level. Wrapping any combination of commands
into recursive loops and flow control constructs in a sense makes scripting a form of
programming.

Some say that scripting isn’t programming, but that’s not true, especially with the variety
and power of scripting languages these days. Shell scripting is no different in that respect,

as compiling code doesn’t necessarily mean you’re programming. With this in mind, try
developing your one-line command from the previous section into something more
useful.

You have a listing of each directory in the current working directory. Suppose you want a
utility to show how much space each directory uses on the disk. The utility you use to
show disk usage in Bash does so on a specified directory’s entire contents or a directory’s
overall disk usage in a summary; it also gives use amounts in bytes by default. With all
that in mind, if you want to know each directory’s disk usage as a freestanding entity, you
need to get and display information for each directory, one by one. The following exam-
ples show what this process would look like as a script.

Notice the command you worked on in the previous section. The for loop goes through
the directory list the command returns, assigning each line to the DIR variable and
executing the code between the do and done keywords.

What Is a Shell? 11

1

Saving the above code as directory.sh script file and then running the script within a Bash
session produces the following output.

$ big_directory.sh
17988 apache2
5900 bin
72 etc
2652 include
82264 lib
0 libexec
0 sbin
35648 share
166768 var

This output doesn’t seem especially helpful. With a few additions, you could get some-
thing more useful considering you want to know the names of all directories using more
than a certain amount of disk space. To achieve this requirement, modify the directory.sh
script file as shown in this next example.

#!/bin/bash

for DIR in $(ls -l | grep '^d' | awk '{ print $NF }'); do

du -sk ${DIR}

done

Now, you’ve started adding variables; PRINT_DIR_MIN is the minimum number of kilobytes
a directory uses to meet the printing criteria. This value could change fairly regularly, so
you want to keep it as easily editable as possible. Also, you could reuse this value else-
where in the script so that you don’t have to change the amount in multiple places when
the number of kilobytes changes.

You might be thinking the find command would be easier to use. However, the reason
the convoluted ls command is used is that find is terrific for browsing through directory
structures but too cumbersome for simply viewing the current directory. If you’re looking
for files in the hierarchy, the find command is highly recommended. However, you’re
simply looking for directories in the current directory because only those directories are
relevant in this example.

The following is an example of the output rendered by the script so far.

CHAPTER 1 Introduction to Shells and PowerShell12

#!/bin/bash

PRINT_DIR_MIN=35000

for DIR in $(ls -l | grep '^d' | awk '{ print $NF }'); do

DIR_SIZE=$(du -sk ${DIR} | cut -f 1)

if [${DIR_SIZE} -ge ${PRINT_DIR_MIN}];then

echo ${DIR}

fi

done

$ big_directory.sh
lib
share
var

This output could be used in a number of ways. For example, systems administrators
might use this script to watch user directories for disk usage thresholds if they want to
notify users when they have reached a certain level of disk space. For this purpose,
knowing when a certain percentage of users reaches or crosses the threshold would be
useful.

NOTE

Keep in mind that plenty of commercial products on the market notify administrators
of overall disk thresholds being met, so although some money could be saved by
writing a shell script to monitor overall disk use, it’s not necessary. The task of finding
how many users have reached a certain use threshold is different, as it involves proac-
tive measures to prevent disk use problems before they get out of control. The solu-
tion is notifying the administrator that certain users should be offloaded to new disks

because of growth on the current disk. This approach isn’t foolproof but is an easy way
to add a layer of proactive monitoring to ensure that users don’t encounter problems
when using their systems. Systems administrators could get creative and modify this
script with command-line parameters to serve several functions, such as listing the top
disk space users and indicating when a certain percentage of users have reached the
disk threshold. That kind of complexity, however, is beyond the scope of this chapter.

Next, the script is modified to display a message when a certain percentage of directories
are a specified size.

What Is a Shell? 13

1

#!/bin/bash

DIR_MIN_SIZE=35000

DIR_PERCENT_BIG_MAX=23

DIR_COUNTER=0

BIG_DIR_COUNTER=0

for DIR in $(ls -l | grep '^d' | awk '{ print $NF }'); do

DIR_COUNTER=$(expr ${DIR_COUNTER} + 1)

DIR_SIZE=$(du -sk ${DIR} | cut -f 1)

if [${DIR_SIZE} -ge ${DIR_MIN_SIZE}];then

BIG_DIR_COUNTER=$(expr ${BIG_DIR_COUNTER} + 1)

fi

done

if [${BIG_DIR_COUNTER} -gt 0]; then

DIR_PERCENT_BIG=$(expr $(expr ${BIG_DIR_COUNTER} * 100) / ${DIR_COUNTER})

if [${DIR_PERCENT_BIG} -gt ${DIR_PERCENT_BIG_MAX}]; then

echo “${DIR_PERCENT_BIG} percent of the directories are larger than

${DIR_MIN_SIZE} kilobytes.”

fi

fi

Now, the preceding example barely looks like what you started with. The variable name
PRINT_DIR_MIN has been changed to DIR_MIN_SIZE because you’re not printing anything
as a direct result of meeting the minimum size. The DIR_PERCENT_BIG_MAX variable has
been added to indicate the maximum allowable percentage of directories at or above the
minimum size. Also, two counters have been added: one (DIR_COUNTER) to count the
directories and one (BIG_DIR_COUNTER) to count the directories exceeding the minimum
size.

Inside the for loop, DIR_COUNTER is incremented, and the if statement in the for loop
now simply increments BIG_DIR_COUNTER instead of printing the directory’s name. An

if statement has been added after the for loop to do additional processing, figure out the
percentage of directories exceeding the minimum size, and then print the message if
necessary. With these changes, the script now produces the following output:

CHAPTER 1 Introduction to Shells and PowerShell14

$ big_directory.sh
33 percent of the directories are larger than 35000 kilobytes.

The output shows that 33% of the directories are 35MB or more. By modifying the echo
line in the script to feed a pipeline into a mail delivery command and tweaking the size
and percentage thresholds for the environment, systems administrators could schedule
this shell script to run at specified intervals and produce directory size reports easily. If
administrators want to get fancy, they could make the size and percentage thresholds
configurable via command-line parameters.

As you can see, even a basic shell script can be powerful. With a mere 22 lines of code,
you have a useful shell script. Some quirks of the script might seem inconvenient (using
the expr command for simple math can be tedious, for example), but every programming
language has its strengths and weaknesses. As a rule, some tasks you need to do are
convoluted to perform, no matter what language you’re using.

The moral is that shell scripting, or scripting in general, can make your life easier. For
example, say your company merges with another company. As part of that merger, you
have to create 1,000 user accounts in Active Directory or another authentication system.
Usually, a systems administrator grabs the list, sits down with a cup of coffee, and starts
clicking or typing away. If an administrator manages to get a migration budget, he or she
could hire an intern or consultants to do the work or purchase migration software. But
why bother performing repetitive tasks or spending money that could be put to better use
(such as a bigger salary)?

Instead, the answer should be automating those tasks by using scripting. Automation is
the purpose of scripting. As a systems administrator, you should take advantage of script-
ing with CLI shells or command interpreters to have access to the same functionality
developers have when coding the systems you manage. However, scripting is within a
platter that tends to be more open, flexible, and focused on the tasks that you as an IT
professional need to perform.

A Shell History
The first shell in wide use was the Bourne shell, the standard user interface for the UNIX
operating system, and UNIX systems still require it for booting. This robust shell provided
pipelines and conditional and recursive command execution. It was developed by C
programmers for C programmers.

Oddly, however, despite being written by and for C programmers, the Bourne shell didn’t
have a C-like coding style. This lack of a similarity to the C language drove the invention
of the C shell, which introduced more C-like programming structures. While the C shell

inventors were building a better mousetrap, they decided to add command-line editing
and command aliasing (defining command shortcuts), which eased the bane of every
UNIX user’s existence: typing. The less a UNIX user has to type to get results, the better.

Although most UNIX users liked the C shell, learning a completely new shell was a chal-
lenge for some. So the Korn shell was invented, which added a number of the C shell
features to the Bourne shell. Because the Korn shell is a commercially licensed product,
the open-source software movement needed a shell for Linux and FreeBSD. The collabora-
tive result was the Bourne Again Shell, or Bash, invented by the Free Software Foundation.

Throughout the evolution of UNIX and the birth of Linux and FreeBSD, other operating
systems were introduced along with their own shells. Digital Equipment Corporation
(DEC) introduced Virtual Memory System (VMS) to compete with UNIX on its VAX
systems. VMS had a shell called Digital Command Language (DCL) with a verbose syntax,
unlike that of its UNIX counterparts. Also, unlike its UNIX counterparts, it wasn’t case
sensitive nor did it provide pipelines.

Somewhere along the line, the PC was born. IBM took the PC to the business market, and
Apple rebranded roughly the same hardware technology and focused on consumers.
Microsoft made DOS run on the IBM PC, acting as both kernel and shell and including
some features of other shells. (The pipeline syntax was inspired by UNIX shells.)

Following DOS was Windows, which went from application to operating system quickly.
Windows introduced a GUI shell, which has become the basis for Microsoft shells ever
since. Unfortunately, GUI shells are notoriously difficult to script, so Windows provided a
DOSShell-like environment. It was improved with a new executable, cmd.exe instead of
command.com, and a more robust set of command-line editing features. Regrettably, this
change also meant that shell scripts in Windows had to be written in the DOSShell syntax
for collecting and executing command groupings.

Over time, Microsoft realized its folly and decided systems administrators should have
better ways to manage Windows systems. Windows Script Host (WSH) was introduced in
Windows 98, providing a native scripting solution with access to the underpinnings of
Windows. It was a library that allowed scripting languages to use Windows in a powerful
and efficient manner. WSH is not its own language, however, so a WSH-compliant script-
ing language was required to take advantage of it, such as JScript, VBScript, Perl, Python,
Kixstart, or Object REXX. Some of these languages are quite powerful in performing
complex processing, so WSH seemed like a blessing to Windows systems administrators.

However, the rejoicing was short lived because there was no guarantee that the WSH-
compliant scripting language you chose would be readily available or a viable option for
everyone. The lack of a standard language and environment for writing scripts made it
difficult for users and administrators to incorporate automation by using WSH. The only
way to be sure the scripting language or WSH version would be compatible on the system
being managed was to use a native scripting language, which meant using DOSShell and
enduring the problems that accompanied it. In addition, WSH opened a large attack
vector for malicious code to run on Windows systems. This vulnerability gave rise to a
stream of viruses, worms, and other malicious programs that have wreaked havoc on
computer systems, thanks to WSH’s focus on automation without user intervention.

A Shell History 15

1

The end result was that systems administrators viewed WSH as both a blessing and a
curse. Although WSH presented a good object model and access to a number of automa-
tion interfaces, it wasn’t a shell. It required using Wscript.exe and Cscript.exe, scripts
had to be written in a compatible scripting language, and its attack vulnerabilities posed a
security challenge. Clearly, a different approach was needed for systems management;
over time, Microsoft reached the same conclusion.

Enter PowerShell
Microsoft didn’t put a lot of effort into a CLI shell; instead, it concentrated on a GUI
shell, which is more compatible with its GUI-based operating systems. (Mac OS X didn’t
put any effort into a CLI shell, either; it used the Bash shell.) However, the resulting
DOSShell had a variety of limitations, such as conditional and recursive programming
structures not being well documented and heavy reliance on goto statements. These
drawbacks hampered shell scripters for years, and they had to use other scripting
languages or write compiled programs to solve common problems.

The introduction of WSH as a standard in the Windows operating system offered a robust
alternative to DOSShell scripting. Unfortunately, WSH presented a number of challenges,
discussed in the preceding section. Furthermore, WSH didn’t offer the CLI shell experi-
ence that UNIX and Linux administrators had enjoyed for years, thus resulting in
Windows administrators being made fun of by the other chaps for the lack of a CLI shell
and its benefits.

Luckily, Jeffrey Snover (the architect of PowerShell) and others on the PowerShell team
realized that Windows needed a strong, secure, and robust CLI shell for systems manage-
ment. Enter PowerShell. PowerShell was designed as a shell with full access to the under-
pinnings of Windows via the .NET Framework, Component Object Model (COM) objects,
and other methods. It also provided an execution environment that’s familiar, easy, and
secure. PowerShell is aptly named, as it puts the power into the Windows shell. For users
wanting to automate their Windows systems, the introduction of PowerShell was exciting
because it combined “the power of WSH with the warm-fuzzy familiarity of a shell.”

PowerShell provides a powerful native scripting language, so scripts can be ported to all
Windows systems without worrying about whether a particular language interpreter is
installed. You might have gone through the rigmarole of scripting a solution with WSH in
Perl, Python, VBScript, JScript, or another language, only to find that the next system you
worked on didn’t have that interpreter installed. At home, users can put whatever they
want on their systems and maintain them however they see fit, but in a workplace, that
option isn’t always viable. PowerShell solves that problem by removing the need for non-
native interpreters. It also solves the problem of wading through Web sites to find
command-line equivalents for simple GUI shell operations and coding them into .cmd
files. Last, PowerShell addresses the WSH security problem by providing a platform for
secure Windows scripting. It focuses on security features such as script signing, lack of
executable extensions, and execution policies (which are restricted by default).

CHAPTER 1 Introduction to Shells and PowerShell16

For anyone who needs to automate administration tasks on a Windows system,
PowerShell provides a much-needed injection of power. Its object-oriented nature boosts
the power available to you, too. If you’re a Windows systems administrator or scripter,
becoming a PowerShell expert is highly recommended.

PowerShell is not just a fluke or a side project at Microsoft. The PowerShell team
succeeded at creating an amazing shell and winning support within Microsoft for its
creation. For example, the Exchange product team adopted PowerShell as the backbone of
the management interface in Exchange Server 2007. That was just the start. Other
product groups at Microsoft, such as System Center Operations Manager 2007, System
Center Data Protection Manager V2, and System Center Virtual Machine Manager, are
being won over by what PowerShell can do for their products.

In fact, PowerShell is the approach Microsoft has been seeking for a general management
interface to Windows-based systems. Over time, PowerShell could replace current manage-
ment interfaces, such as cmd.exe, WSH, CLI tools, and so on, and become integrated into
the Windows operating system as its backbone management interface. With the introduc-
tion of PowerShell, Microsoft has addressed a need for a strong Windows CLI shell.
The sky is the limit for what Windows systems administrators and scripters can achieve
with it.

Summary
In summary, this chapter has served as an introduction to what a shell is, where shells
came from, how to use a shell, and how to create a basic shell script. While learning
these aspects about shells, you have also learned why scripting is so important to systems
administrators. As you have come to discover, scripting allows systems administrators to
automate repetitive tasks. In doing so, task automation allows systems administrators to
perform their jobs more effectively, thus freeing them up to perform more important
business enhancing tasks.

In addition, to learning about shells, you have also been introduced to what PowerShell
is, and why PowerShell was needed. As explained, PowerShell is the replacement to WSH,
which, while powerful, had a number of shortcomings (security and interoperability
being the most noteworthy). PowerShell was also needed because Windows lacked a
viable CLI that could be used to easily complete complex automation tasks. The end
result, for replacing WSH and improving on the Windows CLI, is PowerShell, which is
built on the .NET Framework and brings a much-needed injection of backbone to the
world of Windows scripting and automation.

Summary 17

1

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. Getting Started

. Accessing PowerShell

. Understanding the Command-
Line Interface (CLI)

. Understanding cmdlets

. Useful cmdlets

. Expressions

. Understanding Variables

. Understanding Aliases

. Escape Sequences

. Understanding Scopes

. Your First Script

CHAPTER 2

PowerShell Basics

Introduction
This chapter brings you up to speed on the technical basics
of PowerShell and how to use it. You learn how to down-
load and install PowerShell, work with the PowerShell
command-line interface (CLI), use cmdlets, use variables,
use aliases, understand scopes, and write a basic script. This
chapter isn’t intended to be a complete getting-started
guide; instead, it covers the important concepts you need
to understand for later chapters.

Getting Started
The best way to get started with PowerShell is to visit the
Windows PowerShell home page at www.microsoft.com/
windowsserver2003/technologies/management/
powershell/default.mspx (see Figure 2.1).

This site is a great resource for information about
PowerShell, download documentation, tools, and provides
access to the latest news, and the latest versions of
PowerShell. Your next step is downloading and installing
PowerShell, but first, you need to make sure your system
meets the following PowerShell installation requirements:

• Windows XP Service Pack 2, Windows 2003 Service
Pack 1, or later versions of Windows

• Microsoft .NET Framework 2.0

If .NET Framework 2.0 is not installed on your machine,
you can download its installation package from the
Microsoft Download Center at www.microsoft.com/down-
loads/ (see Figure 2.2).

www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx
www.microsoft.com/downloads/
www.microsoft.com/downloads/

FIGURE 2.1 The Microsoft Windows PowerShell home page

CHAPTER 2 PowerShell Basics20

FIGURE 2.2 The Microsoft Download Center

After installing .NET Framework 2.0, your next step is downloading the PowerShell instal-
lation package from www.microsoft.com/windowsserver2003/technologies/management/
powershell/download.mspx (see Figure 2.3).

To install PowerShell, on the download page, find the correct PowerShell installation
package for your x86 or x64 version of Windows. Then download the PowerShell
installation package by clicking the appropriate download link. Next, start the

www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx

PowerShell installation by clicking Open in the download box or double-clicking the
installation file. (The filename differs depending on the platform, Windows version, and
language pack.) After the installer has started, follow the installation instructions.

Accessing PowerShell 21

2

FIGURE 2.3 Download Windows PowerShell 1.0

Another installation method is a silent installation at the command line, using the
/quiet switch with the PowerShell installation filename. This installation method can be
useful if you plan to install PowerShell on many different systems and want to distribute
the installation via a logon script, Systems Management Server (SMS), or another software
management method. To perform a silent installation, follow these steps:

1. Click Start > Run.

2. Type cmd and click OK to open a cmd command prompt.

3. Type PowerShell-exe-filename /quiet (replacing the italicized text with the
PowerShell installation filename) and press Enter.

Accessing PowerShell
After installing PowerShell, you can access it with three methods. To use the first method
of accessing it from the Start menu, follow these steps:

1. Click Start > All Programs > Windows PowerShell 1.0.

2. Click Windows PowerShell.

To use the second method, follow these steps:

1. Click Start > Run.

2. Type PowerShell in the Run dialog box and click OK.

Both these methods open the PowerShell console, shown in Figure 2.4.

CHAPTER 2 PowerShell Basics22

FIGURE 2.4 The PowerShell console

Follow these steps to use the third method from a cmd command prompt:

1. Click Start > Run.

2. Type cmd and click OK to open a cmd command prompt.

3. At the command prompt, type powershell, as shown in Figure 2.5, and press Enter.

FIGURE 2.5 The PowerShell console launched through the cmd command prompt

Understanding the Command-Line Interface (CLI)
The syntax for using PowerShell from the CLI is similar to the syntax for other CLI shells.
The fundamental component of a PowerShell command is, of course, the name of the

command to be executed. In addition, the command can be made more specific by using
parameters and arguments for parameters. Therefore, a PowerShell command can have
the following formats:

Understanding the Command-Line Interface (CLI) 23

2

C:\>dir /w C:\temp*.txt
Volume in drive C is OS
Volume Serial Number is 1784-ADF9

Directory of C:\temp

Bad Stuff.txt mediapc.txt note.txt Progress.txt
4 File(s) 953 bytes
0 Dir(s) 16,789,958,656 bytes free

C:\>

NOTE

In PowerShell, a parameter is a variable that can be accepted by a command, script, or
function. An argument is a value assigned to a parameter. Although these terms are
often used interchangeably, remembering these definitions is helpful when discussing
their use in PowerShell.

You can see an example of using a command, a parameter, and an argument by running
the dir command with the /w parameter (which displays the output of dir in a wide
format) and an argument of C:\temp*.txt, as shown here:

[command name]

[command name] -[parameter]

[command name] -[parameter] –[parameter] [argument1]

[command name] -[parameter] –[parameter] [argument1],[argument2]

The result of this command is a wide-format directory listing of all the .txt files in
C:\temp. If you use the dir command without any parameters or arguments, the outcome
would be entirely different. The same result happens with PowerShell. For example, here
is a basic PowerShell command that gets process information about explorer.exe:

PS C:\> get-process -Name explorer

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

807 20 31672 14068 149 62.95 1280 explorer

PS C:\>

In this example, Get-Process is the command, -Name is the parameter, and explorer is
the argument. The result of this command is process information about explorer.exe. If
no parameters or arguments are used, the Get-Process command just lists process infor-
mation about all currently running processes, not information about a specific process. To
have control over what a command does or have it perform more than its default action,
you need to understand the command’s syntax. To use commands effectively in the CLI,
use the Get-Help command, discussed later in “Useful cmdlets,” to get detailed informa-
tion about what a command does and its use requirements.

Navigating the CLI
As with all CLI-based shells, you need to understand how to navigate the PowerShell CLI
to use it effectively. Table 2.1 lists the editing operations associated with various keys
when using the PowerShell console.

TABLE 2.1 PowerShell Console Editing Features

Keys Editing Operation

Left and right arrows Moves the cursor left and right through the current command line.
Up and down arrows Move up and down through the list of recently typed commands.
Insert Switches between insert and overstrike text-entry modes.
Delete Deletes the character at the current cursor position.
Backspace Deletes the character immediately preceding the current cursor

position.
F7 Displays a list of recently typed commands in a pop-up window in

the command shell. Use the up and down arrows to select a previ-
ously typed command, and then press Enter to execute the
selected command.

Tab Auto-completes command-line sequences. Use the Shift+Tab
sequence to move backward through a list of potential matches.

Luckily, most of the features in Table 2.1 are native to the cmd command prompt, which
makes PowerShell adoption easier for administrators already familiar with the Windows
command line. The only major difference is that the Tab key auto-completion is
enhanced in PowerShell beyond what’s available with the cmd command prompt.

As with the cmd command prompt, PowerShell performs auto-completion for file and
directory names. So if you enter a partial file or directory name and press Tab, PowerShell
returns the first matching file or directory name in the current directory. Pressing Tab
again returns a second possible match and allows you to cycle through the list of results.
Like the cmd command prompt, PowerShell’s Tab key auto-completion can also auto-
complete with wild cards, as shown in this example:

PS C:\> cd C:\Doc*

CHAPTER 2 PowerShell Basics24

The difference between Tab key auto-completion in cmd and PowerShell is that
PowerShell can auto-complete commands. For example, you can enter a partial command
name and press the Tab key, and PowerShell steps through a list of possible command
matches, as shown here:

Understanding the Command-Line Interface (CLI) 25

2

PS C:\< cd C:\Doc*
<tab>
PS C:\> cd 'C:\Documents and Settings'
PS C:\Documents and Settings>

PS C:\> get-pro
<tab>
PS C:\> get-process

PS C:\> $Z = "Variable”
PS C:\> $Z.<tab>

PowerShell can also auto-complete parameter names associated with a particular
command. Simply enter a command and partial parameter name and press the Tab key,
and PowerShell cycles through the parameters for the command you have specified. This
method also works for variables associated with a command. In addition, PowerShell
performs auto-completion for methods and properties of variables and objects. Take a
look at an example using a variable named $Z set to the value “Variable”:

After you type $Z and press the Tab key, PowerShell cycles through the possible operations
that can be performed against the $Z variable. For example, if you select the $Z.Length
property and press Enter, PowerShell returns the length of the string in the $Z variable, as
shown here:

PS C:\> $Z = "Variable”
PS C:\> $Z.
<tab>
PS C:\> $Z.Length
8
PS C:\

The auto-complete function for variables distinguishes between properties and methods.
Properties are listed without an open parenthesis (as in the preceding $Z.Length
example), and methods are listed with an open parenthesis, as shown in this example:

PowerShell corrects capitalization for the method or property name to match its defini-
tion. For the most part, this functionality is cosmetic because by default, PowerShell is
not case sensitive.

PowerShell Command Types
When you execute a command in PowerShell, the command interpreter looks at the
command name to figure out what task to perform. This process includes determining the
type of command and how to process that command. There are four types of PowerShell
commands: cmdlets, shell function commands, script commands, and native commands.

cmdlet
The first command type is a cmdlet (pronounced “command-let”), which is similar to the
built-in commands in other CLI-based shells. The difference is that cmdlets are imple-
mented by using .NET classes compiled into a dynamic link library (DLL) and loaded into
PowerShell at runtime. This difference means there’s no fixed class of built-in cmdlets;
anyone can use the PowerShell Software Developers Kit (SDK) to write a custom cmdlet,
thus extending PowerShell’s functionality.

A cmdlet is always named as a verb and noun pair separated by a - (hyphen). The verb
specifies the action the cmdlet performs, and the noun specifies the object being operated
on. More details on cmdlets and cmdlet syntax are covered later in “Understanding
cmdlets.”

Shell Function Commands
The next type of command is a shell function command. Shell function commands
provide a way to assign a name to a list of commands. Functions are similar to subrou-
tines and procedures in other programming languages. The main difference between a
script and a function is that a new instance of the shell is started for each shell script, and

CHAPTER 2 PowerShell Basics26

PS C:\> $Z = "Variable”
PS C:\> $Z.con
<tab>
PS C:\> $Z.Contains(

PS C:\> $Z = "Variable"
PS C:\> $Z.Contains("V")
True
PS C:\

When the $Z.Contains(prompt appears, you can use this method to query whether the
$Z variable contains the character V by entering the following command:

functions run in the current instance of the same shell. Here’s an example of defining a
simple function in PowerShell:

Understanding the Command-Line Interface (CLI) 27

2

PS C:\> function my-dir-function {get-childitem | ft Mode,Name}

After my-dir-function has been defined, it yields a formatted listing for the current direc-
tory, as shown in this example:

PS C:\Stuff> my-dir-function

Mode Name
---- ----
d---- Books
d---- Dev
d---- Tools
d---- VMs
-a--- Bad Stuff.txt
-a--- Configuring Credential Roaming.doc
-a--- mediapc.txt

PS C:\Stuff>

You can see how PowerShell is executing an existing function in the current console
session by enabling debug logging. To do this, use the following command:

PS C:\Stuff> set-psdebug -trace 2

Next, execute the function:

PS D:\Stuff> my-dir-function
DEBUG: 1+ my-dir-function
DEBUG: ! CALL function 'my-dir-function'
DEBUG: 1+ function my-dir-function {get-childitem | ft Mode,Name}
...

When the my-dir-function function is pushed onto the stack, PowerShell runs the
Get-ChildItem cmdlet as specified in the function. To turn off PowerShell debugging,
enter the Set-PSDebug –trace 0 command.

NOTE

Functions defined at the command line (as with my-dir-function) remain in effect
only during the current PowerShell session. They are also local in scope and don’t
apply to new PowerShell sessions. For more information, see “Understanding Scopes”
later in this chapter.

Although a function defined at the command line is a useful way to create a series of
commands dynamically in the PowerShell environment, these functions reside only in
memory and are erased when PowerShell is closed and restarted. Therefore, although
creating complex functions dynamically is possible, writing these functions as a set of
script commands might be more practical.

Script Commands
Script commands, the third command type, are PowerShell commands stored in a .ps1
file. The main difference from shell function commands is that script commands are
stored on disk and can be accessed any time, unlike shell function commands that don’t
persist across PowerShell sessions.

Script commands can be run in a PowerShell session or at the cmd command prompt. To
run a script in a PowerShell session, type the script name without the extension. The script
name can be followed by any parameters. The shell then executes the first .ps1 file match-
ing the typed name in any of the paths located in the PowerShell $ENV:PATH variable.

CHAPTER 2 PowerShell Basics28

PS C:\> myscript arg1 arg2

PS C:\> & 'C:\My Scripts\myscript.ps1' arg1 arg2
PS C:\Scripts> .\myscript.ps1 arg1 arg2

The preceding command runs the myscript.ps1 script using the arg1 and arg2 arguments
if the script is located in any of the paths located in the PowerShell $ENV:PATH variable. If
not, you must specify where the script is by using one of these two methods:

NOTE

The & call operator is used in the preceding example because the script path has
spaces that requires the script name to be encapsulated in quotes. This operator
instructs the shell to evaluate the string as a command. If the path doesn’t have
spaces, you can omit the & call operator and the quotes from the script name.

To run a PowerShell script from a cmd command prompt, first use the cd command to
change to the directory where the script is located. Then run the PowerShell executable
with the -command parameter and specify which script to be run, as shown here:

An important detail about script commands in PowerShell concerns their default security
restrictions. By default, scripts are not enabled to run as a method of protection against
malicious scripts. You can control this policy with the Set-ExecutionPolicy cmdlet,
which is explained in Chapter 3, “PowerShell: A More In-Depth Look.”

Native Commands
The last type of command, a native command, consists of external programs that the
operating system can run. Because a new process must be created to run native
commands, they are less efficient than other types of PowerShell commands. Native
commands also have their own parameters for processing commands, which are usually
different from PowerShell parameters.

One serious usability concern is the way PowerShell handles the focus for native
commands. When a native command runs, PowerShell might wait for the command to
finish or continue processing. Take a look at this example:

Understanding the Command-Line Interface (CLI) 29

2

C:\Scripts>powershell -command .\myscript.ps1

C:\>powershell -command C:\Scripts\myscript.ps1

If you don’t want to change to the script’s directory with the cd command, you can also
run it by using an absolute path, as shown in this example:

PS C:\> .\myfile.txt
PS C:\>

The PowerShell prompt returns almost immediately, and the default editor for files with
the .txt extension starts and displays C:\myfile.txt. In this case, notepad.exe starts and
opens the C:\myfile.txt file if you haven’t changed the default text editor.

NOTE

PowerShell has a unique security feature. To run or open a file from the current direc-
tory, you must prefix the command with .\ or ./. This security feature prevents
PowerShell users from accidentally running a native command or script without specify-
ing its execution explicitly.

The same behavior occurs when specifying native commands explicitly, as in the follow-
ing command:

PS C:\> notepad C:\myfile.txt
PS C:\>

In this example, the C:\myfile.txt file is opened in Notepad, and the PowerShell prompt
is returned immediately. However, when you run a native command in the middle of a
pipeline (described in Chapter 1, “Introduction to Shells and PowerShell”), PowerShell
waits for the external process to stop before returning control to the console, as in this
example:

CHAPTER 2 PowerShell Basics30

PS C:\> ping myserver | findstr "TTL"
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
PS C:\>

PowerShell waits for the ping process to stop before returning control to the console and
finishing the pipeline. When this command is entered (replacing myserver with a valid
host on your local network), the PowerShell prompt briefly disappears as the output of
the ping command is piped to the findstr command to look for the string “TTL”. The
PowerShell prompt is returned only when the native command has stopped processing.

Calling PowerShell from Other Shells
In addition to the command-line functionality of PowerShell you’ve been exploring, you
can call PowerShell from other shells, such as the cmd command prompt. When you call
PowerShell as an external application, you can make use of a wide variety of supported
commands, parameters, and arguments. The following command example lists all of the
commands, parameters, and arguments when PowerShell is used from the cmd command
prompt:

C:\>powershell -?

powershell[.exe] [-PSConsoleFile <file> | -Version <version>]
[-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive]
[-OutputFormat {Text | XML}] [-InputFormat {Text | XML}]
[-Command { - | <script-block> [-args <arg-array>]

| <string> [<CommandParameters>] }]

powershell[.exe] -Help | -? | /?

-PSConsoleFile
Loads the specified Windows PowerShell console file. To create a console
file, use Export-Console in Windows PowerShell.

-Version
Starts the specified version of Windows PowerShell.

-NoLogo
Hides the copyright banner at startup.

Understanding the Command-Line Interface (CLI) 31

2

-NoExit
Does not exit after running startup commands.

-NoProfile
Does not use the user profile.

-Noninteractive
Does not present an interactive prompt to the user.

-OutputFormat
Determines how output from Windows PowerShell is formatted. Valid values
are "Text" (text strings) or "XML" (serialized CLIXML format).

-InputFormat
Describes the format of data sent to Windows PowerShell. Valid values are
"Text" (text strings) or "XML" (serialized CLIXML format).

-Command
Executes the specified commands (and any parameters) as though they were
typed at the Windows PowerShell command prompt, and then exits, unless
NoExit is specified. The value of Command can be "-", a string. or a
script block.

If the value of Command is "-", the command text is read from standard
input.

Script blocks must be enclosed in braces ({}). You can specify a script
block only when running PowerShell.exe in Windows PowerShell. The results
of the script are returned to the parent shell as deserialized XML objects,
not live objects.

If the value of Command is a string, Command must be the last parameter
in the command , because any characters typed after the command are
interpreted as the command arguments.

To write a string that runs a Windows PowerShell command, use the format:

"& {<command>}"
where the quotation marks indicate a string and the invoke operator (&)
causes the command to be executed.

-Help, -?, /?
Shows this message. If you are typing a powershell.exe command in Windows
PowerShell, prepend the command parameters with a hyphen (-), not a forward
slash (/). You can use either a hyphen or forward slash in Cmd.exe.

EXAMPLES
powershell -psconsolefile sqlsnapin.psc1
powershell -version 1.0 -nologo -inputformat text -outputformat XML
powershell -command {get-eventlog -logname security}
powershell -command "& {get-eventlog -logname security}"

C:\>

One useful way to take advantage of this capability is to run PowerShell commands from
a cmd command prompt. When PowerShell is called with the -command parameter,
PowerShell scripts or other cmdlets and commands can be used as arguments to the
-command parameter. The following example shows PowerShell being called from a cmd
command prompt, executing a Get-Service cmdlet, selecting the services currently in the
Running state, and then sorting the results by the service’s DisplayName. The entire
command string is enclosed in quotation marks to prevent cmd from attempting to
handle the pipeline.

CHAPTER 2 PowerShell Basics32

C:\>powershell.exe -command "get-service | where-object {$_.Status -eq
'Running'} | sort DisplayName"

Status Name DisplayName
------ ---- -----------
Running ALG Application Layer Gateway Service
Running wuauserv Automatic Updates
Running EventSystem COM+ Event System
Running CryptSvc Cryptographic Services
Running DcomLaunch DCOM Server Process Launcher
Running Dhcp DHCP Client
Running Dnscache DNS Client
Running ERSvc Error Reporting Service
Running Eventlog Event Log
Running helpsvc Help and Support
Running IISADMIN IIS Admin
Running PolicyAgent IPSEC Services
Running dmserver Logical Disk Manager
Running MDM Machine Debug Manager
Running McAfeeFramework McAfee Framework Service
Running Messenger Messenger
Running MSExchangeMGMT Microsoft Exchange Management
Running Netlogon Net Logon
Running McShield Network Associates McShield
Running McTaskManager Network Associates Task Manager
Running Netman Network Connections
Running Nla Network Location Awareness (NLA)
Running OracleMTSRecove... OracleMTSRecoveryService
Running PlugPlay Plug and Play
Running Spooler Print Spooler
Running ProtectedStorage Protected Storage
Running RasMan Remote Access Connection Manager
Running RpcSs Remote Procedure Call (RPC)
Running RemoteRegistry Remote Registry
Running seclogon Secondary Logon
Running SamSs Security Accounts Manager
Running lanmanserver Server
Running ShellHWDetection Shell Hardware Detection
Running SMTPSVC Simple Mail Transfer Protocol (SMTP)
Running SSDPSRV SSDP Discovery Service
Running SENS System Event Notification
Running srservice System Restore Service
Running Schedule Task Scheduler

Understanding cmdlets
cmdlets are a fundamental part of PowerShell’s functionality. They are implemented as
managed classes (built on the .NET Framework) that include a well-defined set of methods
to process data. A cmdlet developer writes the code that runs when the cmdlet is called
and compiles the code into a DLL that’s loaded into a PowerShell instance when the shell
is started.

cmdlets are always named with the format Verb-Noun where the verb specifies the action
and the noun specifies the object to operate on. As you might have noticed, most
PowerShell names are singular, not plural, to make PowerShell more universally usable.
This is done because a command might provide a value or a set of values, and there’s no
way to know ahead of time whether a cmdlet name should be plural. Also, the English
language is inconsistent in dealing with plurals. For example, the word fish can be singu-
lar or plural, depending on the context. If English isn’t your first language, figuring out
what’s supposed to be plural or the correct plural form could be daunting.

NOTE

The default PowerShell verb is Get, which is assumed if no other verb is given. The
effect of this default setting is that the Process command produces the same results
as Get-Process.

To determine the parameters a cmdlet supports, you can review the help information for
the cmdlet by using either of the following commands:

Understanding cmdlets 33

2

Running LmHosts TCP/IP NetBIOS Helper
Running TapiSrv Telephony
Running TermService Terminal Services
Running Themes Themes
Running WebClient WebClient
Running AudioSrv Windows Audio
Running SharedAccess Windows Firewall/Internet Connectio...
Running winmgmt Windows Management Instrumentation
Running W32Time Windows Time
Running WZCSVC Wireless Zero Configuration
Running lanmanworkstation Workstation
Running W3SVC World Wide Web Publishing

PS C:\> cmdletName -?
PS C:\> get-help cmdletName

Furthermore, you can use the Get-Command cmdlet to determine what parameters are
available and how they are used. Here’s an example of the syntax:

CHAPTER 2 PowerShell Basics34

PS C:\> get-command cmdletName

When working with the Get-Command cmdlet, piping its output to the Format-List cmdlet
produces a more concise list of the cmdlet’s use. For example, to display just the defini-
tion information for Get-Process, use the following command:

PS C:\> get-command get-process | format-list Definition

Definition : Get-Process [[-Name] <String[]>] [-Verbose] [-Debug]
[-ErrorAction

<ActionPreference>] [-ErrorVariable <String>]
[-OutVariable <String>] [-OutBuffer <Int32>]

Get-Process -Id <Int32[]> [-Verbose] [-Debug]
[-ErrorAction <ActionPreference>] [-ErrorVariable <String>]
[-OutVariable <String>] [-OutBuffer <Int32>]

Get-Process -InputObject <Process[]> [-Verbose] [-Debug]
[-ErrorAction <ActionPreference>] [-ErrorVariable <String>]
[-OutVariable <String>] [-OutBuffer <Int32>]

PS C:\>

Common Parameters
Because cmdlets derive from a base class, a number of common parameters, which are
available to all cmdlets, can be used to help provide a more consistent interface for
PowerShell cmdlets. These common parameters are described in Table 2.2.

TABLE 2.2 PowerShell Common Parameters

Parameter Data Type Description

Verbose Boolean Generates detailed information about the operation,
much like tracing or a transaction log. This parameter
is effective only in cmdlets that generate verbose data.

Debug Boolean Generates programmer-level detail about the operation.
The cmdlet must support the generation of debug data
for this parameter to be effective.

ErrorAction Enum Determines how the cmdlet responds when an error
occurs. Values are Continue (the default), Stop,
SilentlyContinue, and Inquire.

Parameter Data Type Description

ErrorVariable String Specifies a variable that stores errors from the
command during processing. This variable is populated
in addition to $error.

OutVariable String Specifies a variable that stores output from the
command during processing.

OutBuffer Int32 Determines the number of objects to buffer before
calling the next cmdlet in the pipeline.

WhatIf Boolean Explains what happens if the command is executed but
doesn’t actually execute the command.

Confirm Boolean Prompts the user for permission before performing any
action that modifies the system.

NOTE

The last two parameters in Table 2.2, WhatIf and Confirm, are special, in that they
require a cmdlet to support the .NET method ShouldProcess, which might not be true
for all cmdlets. The ShouldProcess method confirms the operation with the user,
sending the name of the resource to be changed for confirmation before performing
the operation.

Useful cmdlets
When you’re getting started with PowerShell, the Get-Help and Get-Command cmdlets are
extremely useful. These two cmdlets, described in the following sections, help you explore
what PowerShell does and learn more about the commands you can run.

Get-Help
As you might expect, you use the Get-Help cmdlet to retrieve help information about
cmdlets and other topics. To display a list of all help topics, enter Get-Help * at the
PowerShell command prompt, as shown here:

Useful cmdlets 35

2

PS C:\> get-help *

Name Category Synopsis
---- -------- --------
ac Alias Add-Content
asnp Alias Add-PSSnapin
clc Alias Clear-Content
cli Alias Clear-Item
clp Alias Clear-ItemProperty
clv Alias Clear-Variable
cpi Alias Copy-Item
cpp Alias Copy-ItemProperty
cvpa Alias Convert-Path

CHAPTER 2 PowerShell Basics36

diff Alias Compare-Object
epal Alias Export-Alias
epcsv Alias Export-Csv
fc Alias Format-Custom
fl Alias Format-List
foreach Alias ForEach-Object
...
Get-Command Cmdlet Gets basic information...
Get-Help Cmdlet Displays information a...
Get-History Cmdlet Gets a list of the com...
Invoke-History Cmdlet Runs commands from the...
Add-History Cmdlet Appends entries to the...
ForEach-Object Cmdlet Performs an operation ...
Where-Object Cmdlet Creates a filter that ...
Set-PSDebug Cmdlet Turns script debugging...
Add-PSSnapin Cmdlet Adds one or more Windo...
Remove-PSSnapin Cmdlet Removes Windows PowerS...
Get-PSSnapin Cmdlet Gets the Windows Power...
Export-Console Cmdlet Exports the configurat...
Start-Transcript Cmdlet Creates a record of al...
Stop-Transcript Cmdlet Stops a transcript.
Add-Content Cmdlet Adds content to the sp...
Clear-Content Cmdlet Deletes the contents o...
Clear-ItemProperty Cmdlet Deletes the value of a...
Join-Path Cmdlet Combines a path and ch...
Convert-Path Cmdlet Converts a path from a...
Copy-ItemProperty Cmdlet Copies a property and ...
Get-EventLog Cmdlet Gets information about...
Get-ChildItem Cmdlet Gets the items and chi...
Get-Content Cmdlet Gets the content of th...
Get-ItemProperty Cmdlet Retrieves the properti...
Get-WmiObject Cmdlet Gets instances of WMI ...
Move-ItemProperty Cmdlet Moves a property from ...
Get-Location Cmdlet Gets information about...
Set-Location Cmdlet Sets the current worki...
Push-Location Cmdlet Pushes the current loc...
Pop-Location Cmdlet Changes the current lo...
New-PSDrive Cmdlet Installs a new Windows...
Remove-PSDrive Cmdlet Removes a Windows Powe...
Get-PSDrive Cmdlet Gets information about...
...
Alias Provider Provides access to the...
Environment Provider Provides access to the...
FileSystem Provider The PowerShell Provide...
Function Provider Provides access to the...
Registry Provider Provides access to the...
Variable Provider Provides access to the...
Certificate Provider Provides access to X50...
about_alias HelpFile Using alternate names ...

If that list seems too large to work with, you can shorten it by filtering on topic name and
category. For example, to get a list of all cmdlets starting with the verb Get, try the
command shown in the following example:

Useful cmdlets 37

2

about_arithmetic_operators HelpFile Operators that can be ...
about_array HelpFile A compact data structu...
about_assignment_operators HelpFile Operators that can be ...
about_associative_array HelpFile A compact data structu...
about_automatic_variables HelpFile Variables automaticall...
about_break HelpFile A statement for immedi...
about_command_search HelpFile How the Windows PowerS...
about_command_syntax HelpFile Command format in the ...
about_commonparameters HelpFile Parameters that every ...
about_comparison_operators HelpFile Operators that can be ...
about_continue HelpFile Immediately return to ...
about_core_commands HelpFile Windows PowerShell cor...
about_display.xml HelpFile Controlling how object...
about_environment_variable HelpFile How to access Windows ...
...

PS C:\>

PS C:\> get-help -Name get-* -Category cmdlet

Name Category Synopsis
---- -------- --------
Get-Command Cmdlet Gets basic information...
Get-Help Cmdlet Displays information a...
Get-History Cmdlet Gets a list of the com...
Get-PSSnapin Cmdlet Gets the Windows Power...
Get-EventLog Cmdlet Gets information about...
Get-ChildItem Cmdlet Gets the items and chi...
Get-Content Cmdlet Gets the content of th...
...

PS C:\>

After you have selected a help topic, you can retrieve the help information by using the
topic name as the parameter to the Get-Help cmdlet. For example, to retrieve help for the
Get-Content cmdlet, enter the following command:

PS C:\> get-help get-content

NOTE

In Windows PowerShell RC2, two parameters were added for the get-help cmdlet: -
detailed and -full. The -detailed parameter displays additional information about
a cmdlet, including descriptions of parameters and examples of using the cmdlet. The
-full parameter displays the entire help file for a cmdlet, including technical informa-
tion about parameters.

cmdlet Help Topics
PowerShell help is divided into sections for each cmdlet. Table 2.3 describes the help
details for each cmdlet.

TABLE 2.3 PowerShell Help Sections

Help Section Description

Name The name of the cmdlet
Synopsis A brief description of what the cmdlet does
Detailed Description A detailed description of the cmdlet’s behavior, usually including

usage examples
Syntax Specific usage details for entering commands with the cmdlet
Parameters Valid parameters that can be used with this cmdlet
Input Type The type of input this cmdlet accepts
Return Type The type of data that the cmdlet returns
Terminating Errors If present, identifies any errors that result in the cmdlet terminat-

ing prematurely
Non-Terminating Errors Identifies noncritical errors that might occur while the cmdlet is

running but don’t cause the cmdlet to terminate its operation.
Notes Additional detailed information on using the cmdlet, including

specific scenarios and possible limitations or idiosyncrasies
Examples Common usage examples for the cmdlet
Related Links References other cmdlets that perform similar tasks

Get-Command
Another helpful cmdlet is Get-Command, used to list all available cmdlets in a PowerShell
session:

CHAPTER 2 PowerShell Basics38

PS C:\> get-command

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-Content Add-Content [-Path] <String[...
Cmdlet Add-History Add-History [[-InputObject] ...
Cmdlet Add-Member Add-Member [-MemberType] <PS...
Cmdlet Add-PSSnapin Add-PSSnapin [-Name] <String...
Cmdlet Clear-Content Clear-Content [-Path] <Strin...

The Get-Command cmdlet is more powerful than Get-Help because it lists all available
commands (cmdlets, scripts, aliases, functions, and native applications) in a PowerShell
session, as shown in this example:

Understanding cmdlets 39

2

Cmdlet Clear-Item Clear-Item [-Path] <String[]...
Cmdlet Clear-ItemProperty Clear-ItemProperty [-Path] <...
Cmdlet Clear-Variable Clear-Variable [-Name] <Stri...
Cmdlet Compare-Object Compare-Object [-ReferenceOb...
...

PS C:\>

PS C:\ get-command note*

CommandType Name Definition
----------- ---- ----------
Application NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE
Application notepad.exe C:\WINDOWS\system32\notepad.exe

PS C:\>

When using Get-Command with elements other than cmdlets, the information returned is a
little different from information you see for a cmdlet. For example, with an existing appli-
cation, the value of the Definition property is the path to the application. However,
other information about the application is also available, as shown here:

PS C:\> get-command ipconfig | format-list *
FileVersionInfo : File: C:\WINDOWS\system32\ipconfig.exe

InternalName: ipconfig.exe
OriginalFilename: ipconfig.exe
FileVersion: 5.1.2600.2180

(xpsp_sp2_rtm.040803-2158)
FileDescription: IP Configuration Utility
Product: Microsoft© Windows© Operating

System
ProductVersion: 5.1.2600.2180
Debug: False
Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False
Language: English (United States)

Path : C:\WINDOWS\system32\ipconfig.exe
Extension : .exe
Definition : C:\WINDOWS\system32\ipconfig.exe
Name : ipconfig.exe
CommandType : Application

With a function, the Definition property is the body of the function:

CHAPTER 2 PowerShell Basics40

PS C:\> get-command Prompt

CommandType Name Definition
----------- ---- ----------
Function prompt Write-Host ("PS " + $(Get-Lo...

PS C:\>

With an alias, the Definition property is the aliased command:

PS C:\> get-command write

CommandType Name Definition
----------- ---- ----------
Alias write Write-Output

PS C:\>

With a script file, the Definition property is the path to the script. With a non-
PowerShell script (such as a .bat or .vbs file), the information returned is the same as
other existing applications.

Expressions
An additional capability of PowerShell is evaluating expressions. In the following
example, PowerShell returns a result for a simple mathematical expression:

PS C:\> (100 / 2) * 3
150
PS C:\>

NOTE

What’s important to notice in this example is that PowerShell calculates and outputs
the result of the expression immediately. This approach is different from other shells
and scripting languages, where the result of this expression would need to be
assigned to a variable or printed before it could be displayed.

Although PowerShell displays the results of expressions immediately, you can also store
the output of expressions in variables or text files for later use. The following example
stores the output of the expression in the $Calc variable:

Understanding Variables 41

2

PS C:\> $Calc = (100 / 2) * 3
PS C:\> $Calc
150
PS C:\>

This technique can also be extended to PowerShell cmdlets. In the following example, the
$Procinfo variable is set to contain the results of the Get-Process cmdlet by using the
-Name parameter:

PS C:\> $Procinfo = get-process -Name explorer
PS C:\> $Procinfo

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

494 12 14248 24804 83 107.45 2964 explorer

PS C:\> $Procinfo

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

494 12 14248 24804 83 107.51 2964 explorer

PS C:\>

In this example, the $Procinfo variable is set to contain the results of the get-process
-Name explorer command. The value of $Procinfo is then queried, which returns the
results for the explorer process. When $Procinfo is queried a second time, the value for
CPU(s) is different from the first query. This example demonstrates that the contents of
the $Procinfo variable are dynamic, meaning you get real-time information on the
explorer process.

Understanding Variables
A variable is a storage place for data. In most shells, the only data that can be stored in a
variable is text data. In advanced shells and programming languages, data stored in vari-
ables can be almost anything, from strings to sequences to objects. Similarly, PowerShell
variables can be just about anything.

To define a PowerShell variable, you must name it with the $ prefix, which helps delin-
eate variables from aliases, cmdlets, filenames, and other items a shell operator might
want to use. A variable name is case sensitive and can contain any combination of

alphanumeric characters (A–Z and 0–9) and the underscore (_) character. Although
PowerShell variables have no set naming convention, using a name that reflects the type
of data the variable contains is recommended, as shown in this example:

CHAPTER 2 PowerShell Basics42

PS C:\> $MSProcesses = get-process | where {$_.company -match
".*Microsoft*"}
PS C:\> $MSProcesses

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

68 4 1712 6496 30 0.19 2420 ctfmon
715 21 27024 40180 126 58.03 3620 explorer
647 19 23160 36924 109 18.69 1508 iexplore
522 11 31364 30876 151 6.59 3268 powershell
354 17 28172 47612 482 36.22 2464 WINWORD

PS C:\>

As you can see from the previous example, the information that is contained within the
$MSProcesses variable is a collection of Microsoft processes that are currently running on
the system.

NOTE

A variable name can consist of any characters, including spaces, provided the name is
enclosed by braces ({ and } symbols). However, if you use a nonstandard variable
name, PowerShell warns you this practice is not recommended.

Built-in Variables
When a PowerShell session is started, a number of variables are defined automatically, as
shown in this example:

PS C:\> set-location variable:
PS Variable:\> get-childitem

Name Value
---- -----
Error {CommandNotFoundException}
DebugPreference SilentlyContinue
PROFILE \\bob'shosting.com\homes\tyson\My Documents\P...
HOME U:\
Host
System.Management.Automation.Internal.Host.In...
MaximumHistoryCount 64
MaximumAliasCount 4096

These built-in shell variables are divided into two types. The first type has a special
meaning in PowerShell because it stores configuration information for the current
PowerShell session. Of these special variables, the following should be considered note-
worthy because they’re used often throughout this book:

• $_ Contains the current pipeline object

• $Error Contains error objects for the current PowerShell session

Understanding Variables 43

2

input System.Array+SZArrayEnumerator
StackTrace at System.Management.Automation.

CommandDis...
ReportErrorShowSource 1
ExecutionContext System.Management.Automation.

EngineIntrinsics
true True
VerbosePreference SilentlyContinue
ShellId Microsoft.PowerShell
false False
null
MaximumFunctionCount 4096
ConsoleFileName
ReportErrorShowStackTrace 0
FormatEnumerationLimit 4
? True
PSHOME C:\Program Files\Windows

PowerShell\v1.0
MyInvocation System.Management.Automation.

InvocationInfo
PWD Variable:\
^ set-location
_
ReportErrorShowExceptionClass 0
ProgressPreference Continue
ErrorActionPreference Continue
args {}
MaximumErrorCount 256
NestedPromptLevel 0
WhatIfPreference 0
$ variable:
ReportErrorShowInnerException 0
ErrorView NormalView
WarningPreference Continue
PID 3124
ConfirmPreference High
MaximumDriveCount 4096
MaximumVariableCount 4096

PS C:\>

The second type of built-in variable consists of preference settings used to control the
behavior of PowerShell. Table 2.4 describes these variables, based on the PowerShell User
Guide.

NOTE

A command policy can be one of the following strings: SilentlyContinue,
NotifyContinue, NotifyStop, or Inquire.

TABLE 2.4 PowerShell Preference Settings

Name Allowed Values Description

$DebugPreference Command policy Action to take when data is written via
Write-Debug in a script or
WriteDebug() in a cmdlet or provider

$ErrorActionPreference Command policy Action to take when data is written via
Write-Error in a script or
WriteError() in a cmdlet or provider

$MaximumAliasCount Int Maximum number of aliases
$MaximumDriveCount Int Maximum number of allowed drives
$MaximumErrorCount Int Maximum number of errors held by

$Error

$MaximumFunctionCount Int Maximum number of functions that
can be created

$MaximumVariableCount Int Maximum number of variables that
can be created

$MaximumHistoryCount Int Maximum number of entries saved in
the command history

$ShouldProcessPreference Command policy Action to take when ShouldProcess is
used in a cmdlet

CHAPTER 2 PowerShell Basics44

PS C:\> get-service | where-object {$_.Name -match "W32Time"}

Status Name DisplayName
------ ---- -----------
Running W32Time Windows Time

PS C:\>

PS C:\> $Error
Unexpected token 'Name' in expression or statement.
PS C:\>

Name Allowed Values Description

$ProcessReturnPreference Boolean ShouldProcess returns this setting
$ProgressPreference Command policy Action to take when data is written via

Write-Progress in a script or
WriteProgress() in a cmdlet or
provider

$VerbosePreference Command policy Action to take when data is written via
Write-Verbose in a script or
WriteVerbose() in a cmdlet or provider

Understanding Aliases
Unfortunately, using PowerShell requires a lot of typing unless you’re running a script.
For example, open a PowerShell console and try typing the following command:

Understanding Aliases 45

2

PS C:\> get-process | where-object {$_.Company -match ".*Microsoft*"}
| format-table Name, ID, Path –Autosize

PS C:\> gps | ? {$_.Company -match ".*Microsoft*"} | ft Name, ID, Path
–Autosize

That’s a long command to type. Luckily, like most shells, PowerShell supports aliases for
cmdlets and executables. So if you want to cut down on the typing in this command, you
can use PowerShell’s default aliases. Using these aliases, the Get-Process example looks
like this:

This example isn’t a major reduction in the amount of typing, but aliases can save you
some time and prevent typos. To get a list of the current PowerShell aliases supported in
your session, use the Get-Alias cmdlet, as shown here:

PS C:\> get-alias

CommandType Name Definition
----------- ---- ----------
Alias ac Add-Content
Alias asnp Add-PSSnapin
Alias clc Clear-Content
Alias cli Clear-Item
Alias clp Clear-ItemProperty
Alias clv Clear-Variable
Alias cpi Copy-Item
Alias cpp Copy-ItemProperty
Alias cvpa Convert-Path

CHAPTER 2 PowerShell Basics46

Alias diff Compare-Object
Alias epal Export-Alias
Alias epcsv Export-Csv
Alias fc Format-Custom
Alias fl Format-List
Alias foreach ForEach-Object
Alias % ForEach-Object
Alias ft Format-Table
Alias fw Format-Wide
Alias gal Get-Alias
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gdr Get-PSDrive
Alias ghy Get-History
Alias gi Get-Item
Alias gl Get-Location
Alias gm Get-Member
Alias gp Get-ItemProperty
Alias gps Get-Process
Alias group Group-Object
Alias gsv Get-Service
Alias gsnp Get-PSSnapin
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias iex Invoke-Expression
Alias ihy Invoke-History
Alias ii Invoke-Item
Alias ipal Import-Alias
Alias ipcsv Import-Csv
Alias mi Move-Item
Alias mp Move-ItemProperty
Alias nal New-Alias
Alias ndr New-PSDrive
Alias ni New-Item
Alias nv New-Variable
Alias oh Out-Host
Alias rdr Remove-PSDrive
Alias ri Remove-Item
Alias rni Rename-Item
Alias rnp Rename-ItemProperty
Alias rp Remove-ItemProperty
Alias rsnp Remove-PSSnapin
Alias rv Remove-Variable
Alias rvpa Resolve-Path
Alias sal Set-Alias
Alias sasv Start-Service
Alias sc Set-Content
Alias select Select-Object
Alias si Set-Item
Alias sl Set-Location

Understanding Aliases 47

2

Alias sleep Start-Sleep
Alias sort Sort-Object
Alias sp Set-ItemProperty
Alias spps Stop-Process
Alias spsv Stop-Service
Alias sv Set-Variable
Alias tee Tee-Object
Alias where Where-Object
Alias ? Where-Object
Alias write Write-Output
Alias cat Get-Content
Alias cd Set-Location
Alias clear Clear-Host
Alias cp Copy-Item
Alias h Get-History
Alias history Get-History
Alias kill Stop-Process
Alias lp Out-Printer
Alias ls Get-ChildItem
Alias mount New-PSDrive
Alias mv Move-Item
Alias popd Pop-Location
Alias ps Get-Process
Alias pushd Push-Location
Alias pwd Get-Location
Alias r Invoke-History
Alias rm Remove-Item
Alias rmdir Remove-Item
Alias echo Write-Output
Alias cls Clear-Host
Alias chdir Set-Location
Alias copy Copy-Item
Alias del Remove-Item
Alias dir Get-ChildItem
Alias erase Remove-Item
Alias move Move-Item
Alias rd Remove-Item
Alias ren Rename-Item
Alias set Set-Variable
Alias type Get-Content

PS C:\>

Discovering Alias cmdlets
Several alias cmdlets enable you to define new aliases, export aliases, import aliases, and
display existing aliases. By using the following command, you can get a list of all related
alias cmdlets:

You’ve already seen how to use the Get-Alias cmdlet to produce a list of aliases available
in the current PowerShell session. The Export-Alias and Import-Alias cmdlets are used
to export and import alias lists from one PowerShell session to another. Finally, the New-
Alias and Set-Alias cmdlets allow you to define new aliases for the current PowerShell
session.

NOTE

The alias implementation in PowerShell is limited. As mentioned earlier, an alias works
only for cmdlets or executables, not for cmdlets and executables used with a parame-
ter. However, there are methods to work around this limitation. One method is defining
the command in a variable and then calling the variable from other commands. The
problem with this approach is that the variable can be called only in the current
PowerShell session, unless it’s defined in the profile.ps1 file. The second but better
method is placing your command in a function.

Creating Persistent Aliases
The alises created when you use the New-Alias and Set-Alias cmdlets are valid only in
the current PowerShell session. Exiting a PowerShell session discards any existing aliases.
To have aliases persist across PowerShell sessions, you must define them in the
profile.ps1 file, as shown in this example:

CHAPTER 2 PowerShell Basics48

PS C:\> get-command *-Alias

CommandType Name Definition
----------- ---- ----------
Cmdlet Export-Alias Export-Alias [-Path] <String...
Cmdlet Get-Alias Get-Alias [[-Name] <String[]...
Cmdlet Import-Alias Import-Alias [-Path] <String...
Cmdlet New-Alias New-Alias [-Name] <String> [...
Cmdlet Set-Alias Set-Alias [-Name] <String> [...

set-alias new new-object

set-alias time get-date

...

Although command shortening is appealing, the extensive use of aliases isn’t recom-
mended. One reason is that aliases aren’t very portable. For example, if you use a lot of
aliases in a script, you must include a Set-Aliases sequence at the start of the script to
make sure those aliases are present, regardless of machine or session profile, when the
script runs.

However, a bigger concern than portability is that aliases can often confuse or obscure the
true meaning of commands or scripts. The aliases you define might make sense to you,

but not everyone shares your logic in defining aliases. So if you want others to under-
stand your scripts, you must be careful about using too many aliases. Instead, look into
creating reusable functions.

NOTE

When creating aliases for scripts, use names that other people can understand. For
example, there’s no reason, other than to encode your scripts, to create aliases
consisting of only two letters.

Escape Sequences
The grave-accent or backtick (`) acts as the PowerShell escape character. Depending on
when this character is used, PowerShell interprets characters immediately following it in a
certain way.

If the backtick character is used at the end of a line in a script, it acts as a continuation
character. In other words, ` acts the same way & does in VBScript, allowing you to break
long lines of code into smaller chunks, as shown here:

Escape Sequences 49

2

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

If the backtick character precedes a PowerShell variable, the characters immediately
following it should be passed on without substitution or processing:

PS C:\> $String = "Does this work?"
PS C:\> write-host "The question is: $String"
The question is: Does this work?
PS C:\> write-host "The question is: `$String"
The question is: $String
PS C:\>

If the backtick character is used in a string or interpreted as part of a string, that means
the next character should be interpreted as a special character. For example, if you want
to place a TAB in your string, you use the `t escape character sequence, as shown:

PS C:\> $String = "Look at the tab:`t [TAB]"
PS C:\> write-host $string
Look at the tab: [TAB]
PS C:\>

Table 2.5 lists the escape character sequences supported by PowerShell.

TABLE 2.5 PowerShell Escape Sequences

Character Meaning

`’ Single quotation mark
`” Double quotation mark
`0 Null character
`a Alert (bell or beep signal to the computer speaker)
`b Backspace
`f Form feed (used for printer output)
`n Newline
`r Carriage return
`t Horizontal tab (8 spaces)
`v Vertical tab (used for printer output)

Understanding Scopes
A scope is a logical boundary in PowerShell that isolates the use of functions and vari-
ables. Scopes can be defined as global, local, script, and private. They function in a hierar-
chy in which scope information is inherited downward. For example, the local scope can
read the global scope, but the global scope can’t read information from the local scope.
Scopes and their use are described in the following sections.

Global
As the name indicates, a global scope applies to an entire PowerShell instance. Global
scope data is inherited by all child scopes, so any commands, functions, or scripts that
run make use of variables defined in the global scope. However, global scopes are not
shared between different instances of PowerShell.

The following example shows the $Processes variable being defined as a global variable
in the ListProcesses function. Because the $Processes variable is being defined globally,
checking $Processes.Count after ListProcesses completes returns a count of the number
of active processes at the time ListProcesses was executed.

CHAPTER 2 PowerShell Basics50

PS C:\> function ListProcesses {$Global:Processes = get-process}
PS C:\> ListProcesses
PS C:\> $Processes.Count
37

Understanding Scopes 51

2

NOTE

In PowerShell, you can use an explicit scope indicator to determine the scope a vari-
able resides in. For instance, if you want a variable to reside in the global scope, you
define it as $Global:variablename. If a explicit scope indicator isn’t used, a variable
resides in the current scope for which it’s defined.

Local
A local scope is created dynamically each time a function, filter, or script runs. After a
local scope has finished running, information in it is discarded. A local scope can read
information from the global scope but can’t make changes to it.

The following example shows the locally scoped variable $Processes being defined in the
ListProcesses function. After ListProcesses finishes running, the $Processes variable
no longer contains any data because it was defined only in the ListProcesses function.
As you can see, checking $Processes.Count after the ListProcesses function is finished
produces no results.

PS C:\> function ListProcesses {$Processes = get-process}
PS C:\> ListProcesses
PS C:\> $Processes.Count
PS C:\>

Script
A script scope is created whenever a script file runs and is discarded when the script
finishes running. To see an example of how a script scope works, create the following
script and save it as ListProcesses.ps1:

$Processes = get-process

write-host "Here is the first process:" -Foregroundcolor Yellow

$Processes[0]

After you have created the script file, run it from a PowerShell session. Your output should
look similar to this example:

CHAPTER 2 PowerShell Basics52

Notice that when the ListProcesses.ps1 script runs, information about the first process
object in the $Processes variable is written to the console. However, when you try to
access information in the $Processes variable from the console, an error is returned
because the $Processes variable is valid only in the script scope. When the script finishes
running, that scope and all its contents are discarded.

What if you want to use a script in a pipeline or access it as a library file for common
functions? Normally, this isn’t possible because PowerShell discards a script scope when-
ever a script finishes running. Luckily, PowerShell supports the dot sourcing technique, a
term that originally came from UNIX. Dot sourcing a script file tells PowerShell to load a
script scope into the calling parent’s scope.

To dot source a script file, simply prefix the script name with a period (dot) when running
the script, as shown here:

PS C:\> .\ListProcesses.ps1
Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

105 5 1992 4128 32 916 alg

PS C:\> $Processes[0]
Cannot index into a null array.
At line:1 char:12
+ $Processes[0 <<<<]
PS C:\>

PS C:\> . .\myscript.ps1

Private
A private scope is similar to a local scope, with one key difference: Definitions in the
private scope aren’t inherited by any child scopes.

The following example shows the privately scoped variable $Processes defined in the
ListProcesses function. Notice that during execution of the ListProcesses function, the
$Processes variable isn’t available to the child scope represented by the script block
enclosed by { and } in lines 6-9.

Your First Script 53

2

This example works because it uses the & call operator. With this call operator, you can
execute fragments of script code in an isolated local scope. This technique is helpful for
isolating a script block and its variables from a parent scope or, as in this example, isolat-
ing a privately scoped variable from a script block.

Your First Script
Most of the commands covered in this chapter are interactive, meaning you enter
commands at the PowerShell prompt and then output is returned. Although using
PowerShell interactively is helpful for tasks that need to be done only once, it’s not an
effective way to perform repetitive automation tasks. Fortunately, PowerShell has the
capability to read in files containing stored commands, which enables you to compose,
save, and recall a sequence of commands when needed. These sequences of stored
commands are commonly referred to as scripts.

PowerShell scripts are simply text files stored with a .ps1 extension. You can use any text
editor (such as Notepad) to create a text file containing commands that make up a
PowerShell script. For example, open Notepad and type the following command:

PS C:\> function ListProcesses {$Private:Processes = get-process
>> write-host "Here is the first process:" -Foregroundcolor Yellow
>> $Processes[0]
>> write-host
>>
>> &{
>> write-host "Here it is again:" -Foregroundcolor Yellow
>> $Processes[0]
>> }
>> }
>>
PS C:\> ListProcesses
Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

105 5 1992 4128 32 916 alg

Here it is again:
Cannot index into a null array.
At line:7 char:20
+ $Processes[0 <<<<]

PS C:\>

get-service | where-object {$_.Status -eq "Stopped"}

CHAPTER 2 PowerShell Basics54

Next, save this file with the name ListStoppedServices.ps1 in a directory of your choice.
For this example, the C:\Scripts directory is used.

Before you can run this script, you need to adjust PowerShell’s execution policy because
the default setting doesn’t allow running scripts for protection against malicious scripts.
To change this setting, you use the Set-ExecutionPolicy cmdlet as shown in the follow-
ing example. You can also use the Get-ExecutionPolicy cmdlet to verify the current
execution policy. (Chapter 3 discusses PowerShell security and best practices in more
detail.)

PS C:\> set-executionpolicy RemoteSigned
PS C:\> get-executionpolicy
RemoteSigned
PS C:\>

The RemoteSigned policy allows scripts created locally to run without being digitally
signed (a concept discussed in Chapter 4, “Code Signing”), but still requires scripts down-
loaded from the Internet to be digitally signed. These settings give you the flexibility to
run unsigned scripts from your local machine yet provide some protection against
unsigned external scripts.

After changing PowerShell’s execution policy to RemoteSigned, you can run the script in
any PowerShell session by simply typing the script’s full directory path and filename. In
the following example, entering the C:\Scripts\ListStoppedServices.ps1 command
produces this output:

PS C:\> C:\Scripts\ListStoppedServices.ps1

Status Name DisplayName
------ ---- -----------
Stopped Alerter Alerter
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Stopped BITS Background Intelligent Transfer Ser...
Stopped Browser Computer Browser
Stopped CiSvc Indexing Service
Stopped ClipSrv ClipBook
Stopped clr_optimizatio... .NET Runtime Optimization Service v...
Stopped COMSysApp COM+ System Application
Stopped dmadmin Logical Disk Manager Administrative...
Stopped FastUserSwitchi... Fast User Switching Compatibility
Stopped HidServ Human Interface Device Access
Stopped HTTPFilter HTTP SSL
Stopped IDriverT InstallDriver Table Manager
Stopped ImapiService IMAPI CD-Burning COM Service
Stopped mnmsrvc NetMeeting Remote Desktop Sharing
Stopped MSDTC Distributed Transaction Coordinator
Stopped MSIServer Windows Installer
Stopped MSSQLServerADHe... MSSQLServerADHelper

Your First Script 55

2

Although this basic one-line script is simple, it stills serves to illustrate how to write a
script and use it in PowerShell. If needed, you can include more commands to have it
perform an automation task. The following is an example:

Stopped NetDDE Network DDE
Stopped NetDDEdsdm Network DDE DSDM
Stopped NGClient Symantec Ghost Client Agent
Stopped NtLmSsp NT LM Security Support Provider
Stopped NtmsSvc Removable Storage
Stopped OracleORA92Clie... OracleORA92ClientCache
Stopped ose Office Source Engine
Stopped RasAuto Remote Access Auto Connection Manager
Stopped RDSessMgr Remote Desktop Help Session Manager
Stopped RemoteAccess Routing and Remote Access
Stopped rpcapd Remote Packet Capture Protocol v.0 ...
Stopped RpcLocator Remote Procedure Call (RPC) Locator
Stopped RSVP QoS RSVP
Stopped SCardSvr Smart Card
Stopped SwPrv MS Software Shadow Copy Provider
Stopped SysmonLog Performance Logs and Alerts
Stopped TlntSvr Telnet
Stopped TrkWks Distributed Link Tracking Client
Stopped upnphost Universal Plug and Play Device Host
Stopped UPS Uninterruptible Power Supply
Stopped vmount2 VMware Virtual Mount Manager Extended
Stopped VSS Volume Shadow Copy
Stopped WmdmPmSN Portable Media Serial Number Service
Stopped Wmi Windows Management Instrumentation ...
Stopped WmiApSrv WMI Performance Adapter
Stopped wscsvc Security Center
Stopped xmlprov Network Provisioning Service

PS C:\>

param ([string] $StartsWith)

$StopServices = get-service | where-object {$_.Status -eq "Stopped"}

write-host "The following $StartsWith services are stopped on" `

"$Env:COMPUTERNAME:" -Foregroundcolor Yellow

$StopServices | where-object {$_.Name -like $StartsWith} | `

format-table Name, DisplayName

CHAPTER 2 PowerShell Basics56

The script then displays this output:

PS C:\> C:\Scripts\ListStoppedServices.ps1 N*
The following N* services are stopped on PLANX:

Name DisplayName
---- -----------
NetDDE Network DDE
NetDDEdsdm Network DDE DSDM
NtLmSsp NT LM Security Support
Provider
NtmsSvc Removable Storage

PS C:\>

This script is a little more complex because it can filter the stopped services based on the
provided string to make the output cleaner. This script isn’t a complicated piece of
automation, but it does serve to illustrate just some of the power that PowerShell has. To
use that power, you just need to gain a better understanding of PowerShell’s features so
that you can write more complex and meaningful scripts.

Summary
In this chapter, you have focused on learning the PowerShell basics. In learning these
basics, you have gained insight into such concepts as PowerShell’s different command
types, what cmdlets are, how to use aliases variables and the CLI, and PowerShell scopes.
After learning these concepts, you then moved on to learning the basics around
PowerShell script writing and completed your first script. But, the most important
concept that should be taken from this chapter is that you have downloaded PowerShell,
installed it, and started using it.

By just using PowerShell, you have taken the first of many steps to becoming a master in
PowerShell usage. This first step is after all the hardest, and once taken, the road should
start to become easier and easier. As such, over the next couple chapters or maybe by the
end of this book, you should notice your proficiency in PowerShell growing as more
concepts are reviewed and a push is made to understand how PowerShell can be applied
to meet automation needs.

IN THIS CHAPTER

. Introduction

. Object Based

. Understanding Providers

. Understanding Errors

. Error Handling

. PowerShell Profiles

. Understanding Security

. The PowerShell Language

CHAPTER 3

PowerShell: A More
In-Depth Look

Introduction
This chapter delves into some specifics of how PowerShell
works that you need to understand for the later scripting
chapters. Try not to get too bogged down in details;
instead, focus on understanding the concepts. Because
PowerShell is a change from Windows scripting of the past,
you might also need to change your scripting methods.
With practice, it will start to feel as familiar as Windows
scripting via VBScript or JScript, which was the standard
method for Windows automation tasks.

Object Based
Most shells operate in a text-based environment, which
means you typically have to manipulate the output for
automation purposes. For example, if you need to pipe data
from one command to the next, the output from the first
command usually must be reformatted to meet the second
command’s requirements. Although this method has
worked for years, dealing with text-based data can be
difficult and frustrating.

Often, a lot of work is necessary to transform text data into
a usable format. Microsoft has set out to change the stan-
dard with PowerShell, however. Instead of transporting
data as plain text, PowerShell retrieves data in the form of
.NET Framework objects, which makes it possible for
commands (cmdlets) to access object properties and
methods directly. This change has simplified shell use.
Instead of modifying text data, you can just refer to the

required data by name. Similarly, instead of writing code to transform data into a usable
format, you can simply refer to objects and manipulate them as needed.

Understanding the Pipeline
The use of objects gives you a more robust method for dealing with data. In the past, data
was transferred from one command to the next by using the pipeline, which makes it
possible to string a series of commands together to gather information from a system.
However, as mentioned previously, most shells have a major disadvantage: The informa-
tion gathered from commands is text based. Raw text needs to be parsed (transformed)
into a format the next command can understand before being piped. To see how parsing
works, take a look at the following Bash example:

CHAPTER 3 PowerShell: A More In-Depth Look58

$ ps -ef | grep "bash" | cut -f2

The goal is to get the process ID (PID) for the bash process. A list of currently running
processes is gathered with the ps command and then piped to the grep command and
filtered on the string “bash”. Next, the remaining information is piped to the cut
command, which returns the second field containing the PID based on a tab delimiter.

NOTE

A delimiter is a character used to separate data fields. The default delimiter for the
cut command is a tab. If you want to use a different delimiter, use the -d parameter.

Based on the man information for the grep and cut commands, it seems as though the ps
command should work. However, the PID isn’t returned or displayed in the correct
format.

The command doesn’t work because the Bash shell requires you to manipulate text data
to display the PID. The output of the ps command is text based, so transforming the text
into a more usable format requires a series of other commands, such as grep and cut.
Manipulating text data makes this task more complicated. For example, to retrieve the
PID from the data piped from the grep command, you need to provide the field location
and the delimiter for separating text information to the cut command. To find this infor-
mation, run the first part of the ps command:

$ ps -ef | grep "bash"
bob 3628 1 con 16:52:46 /usr/bin/bash

The field you need is the second one (3628). Notice that the ps command doesn’t use a
tab delimiter to separate columns in the output; instead, it uses a variable number of
spaces or a whitespace delimiter, between fields.

NOTE

A whitespace delimiter consists of characters, such as spaces or tabs, that equate to
blank space.

The cut command has no way to tell that spaces should be used as a field separator,
which is why the command doesn’t work. To get the PID, you need to use the awk script-
ing language. The command and output in that language would look like this:

Object Based 59

3$ ps -ef | grep "bash" | awk '{print $2}'
3628

The point is that although most UNIX and Linux shell commands are powerful, using
them can be complicated and frustrating. Because these shells are text-based, often
commands lack functionality or require using additional commands or tools to perform
tasks. To address the differences in text output from shell commands, many utilities and
scripting languages have been developed to parse text.

The result of all this parsing is a tree of commands and tools that make working with
shells unwieldy and time consuming, which is one reason for the proliferation of
management interfaces that rely on GUIs. This trend can be seen among tools Windows
administrators use, too; as Microsoft has focused on enhancing the management GUI at
the expense of the CLI.

Windows administrators now have access to the same automation capabilities as their
UNIX and Linux counterparts. However, PowerShell and its use of objects fill the auto-
mation need Windows administrators have had since the days of batch scripting and
WSH in a more usable and less parsing intense manner. To see how the PowerShell
pipeline works, take a look at the following PowerShell example:

PS C:\> get-process bash | format-table id -autosize

Id
--

3628

PS C:\>

Like the Bash example, the goal of this PowerShell example is to display the PID for the
bash process. First, information about the bash process is gathered by using the Get-
Process cmdlet. Second, the information is piped to the Format-Table cmdlet, which
returns a table containing only the PID for the bash process.

The Bash example requires complex shell scripting, but the PowerShell example simply
requires formatting a table. As you can see, the structure of PowerShell cmdlets is much
easier to understand and use.

Now that you have the PID for the bash process, take a look at the following example,
which shows how to kill (stop) that process:

CHAPTER 3 PowerShell: A More In-Depth Look60

PS C:\> get-process bash | stop-process
PS C:\>

PS C:\> $Ping = new-object Net.NetworkInformation.Ping
PS C:\>

PS C:\> $IE = new-object -comObject InternetExplorer.Application
PS C:\> $IE.Visible=$True
PS C:\> $IE.Navigate("www.cnn.com")
PS C:\>

.NET Framework Tips
Before continuing, you need to know a few points about how PowerShell interacts with
the .NET Framework. This information is critical to understanding the scripts you review
in later chapters.

New-Object cmdlet
You use the New-Object cmdlet to create an instance of a .NET object. To do this, you
simply provide the fully qualified name of the .NET class you want to use, as shown:

By using the New-Object cmdlet, you now have an instance of the Ping class that enables
you to detect whether a remote computer can be reached via Internet Control Message
Protocol (ICMP). Therefore, you have an object-based version of the Ping.exe command-
line tool.

If you’re wondering what the replacement is for the VBScript CreateObject method, it’s
the New-Object cmdlet. You can also use the comObject switch with this cmdlet to create
a COM object, simply by specifying the object’s programmatic identifier (ProgID), as
shown here:

Square Brackets
Throughout this book, you’ll notice the use of square brackets ([and]), which indicate
that the enclosed term is a .NET Framework reference. These references can be one of the
following:

• A fully qualified class name—[System.DirectoryServices.ActiveDirectory.Forest],
for example

• A class in the System namespace—[string], [int], [boolean], and so forth

• A type accelerator—[ADSI], [WMI], [Regex], and so on

NOTE

Chapter 8, “PowerShell and WMI,” explains type accelerators in more detail.

Defining a variable is a good example of when to use a .NET Framework reference. In this
case, the variable is assigned an enumeration value by using an explicit cast of a .NET
class, as shown in this example:

Object Based 61

3

PS C:\> $SomeNumber = [int]1
PS C:\> $Identity = [System.Security.Principal.NTAccount]"Administrator"
PS C:\>

If an enumeration can consist of only a fixed set of constants, and you don’t know these
constants, you can use the System.Enum class’s GetNames method to find this information:

PS C:\>
[enum]::GetNames([System.Security.AccessControl.FileSystemRights])
ListDirectory
ReadData
WriteData
CreateFiles
CreateDirectories
AppendData
ReadExtendedAttributes
WriteExtendedAttributes
Traverse
ExecuteFile
DeleteSubdirectoriesAndFiles
ReadAttributes
WriteAttributes
Write
Delete
ReadPermissions
Read
ReadAndExecute
Modify
ChangePermissions
TakeOwnership
Synchronize
FullControl
PS C:\>

Static Classes and Methods
Square brackets are used not only for defining variables, but also for using or calling static
members of a .NET class. To do this, just use a double colon (::) between the class name
and the static method or property, as shown in this example:

CHAPTER 3 PowerShell: A More In-Depth Look62

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

Name : taosage.internal
Sites : {HOME}
Domains : {taosage.internal}
GlobalCatalogs : {sol.taosage.internal}
ApplicationPartitions : {DC=DomainDnsZones,DC=taosage,DC=internal,
DC=ForestDns

Zones,DC=taosage,DC=internal}
ForestMode : Windows2003Forest
RootDomain : taosage.internal
Schema :
CN=Schema,CN=Configuration,DC=taosage,DC=internal
SchemaRoleOwner : sol.taosage.internal
NamingRoleOwner : sol.taosage.internal

PS C:\>

Reflection
Reflection is a feature in the .NET Framework that enables developers to examine objects
and retrieve their supported methods, properties, fields, and so on. Because PowerShell is
built on the .NET Framework, it provides this feature, too, with the Get-Member cmdlet.
This cmdlet analyzes an object or collection of objects you pass to it via the pipeline. For
example, the following command analyzes the objects returned from the Get-Process
cmdlet and displays their associated properties and methods:

PS C:\> get-process | get-member

Developers often refer to this process as “interrogating” an object. It’s a faster way to get
information about objects than using the Get-Help cmdlet (which at the time of this
writing provides limited information), reading the MSDN documentation, or searching
the Internet.

Object Based 63

3

PS C:\> get-process | get-member

TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemorySize
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet
add_Disposed Method System.Void add_Disposed(Event...
add_ErrorDataReceived Method System.Void add_ErrorDataRecei...
add_Exited Method System.Void add_Exited(EventHa...
add_OutputDataReceived Method System.Void add_OutputDataRece...
BeginErrorReadLine Method System.Void BeginErrorReadLine()
BeginOutputReadLine Method System.Void BeginOutputReadLine()
CancelErrorRead Method System.Void CancelErrorRead()
CancelOutputRead Method System.Void CancelOutputRead()
Close Method System.Void Close()
CloseMainWindow Method System.Boolean CloseMainWindow()
CreateObjRef Method System.Runtime.Remoting.ObjRef...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
get_BasePriority Method System.Int32 get_BasePriority()
get_Container Method System.ComponentModel.IContain...
get_EnableRaisingEvents Method System.Boolean get_EnableRaisi...
...
__NounName NoteProperty System.String __NounName=Process
BasePriority Property System.Int32 BasePriority {get;}
Container Property System.ComponentModel.IContain...
EnableRaisingEvents Property System.Boolean EnableRaisingEv...
ExitCode Property System.Int32 ExitCode {get;}
ExitTime Property System.DateTime ExitTime {get;}
Handle Property System.IntPtr Handle {get;}
HandleCount Property System.Int32 HandleCount {get;}
HasExited Property System.Boolean HasExited {get;}
Id Property System.Int32 Id {get;}
MachineName Property System.String MachineName {get;}
MainModule Property System.Diagnostics.ProcessModu...
MainWindowHandle Property System.IntPtr MainWindowHandle...
MainWindowTitle Property System.String MainWindowTitle ...
MaxWorkingSet Property System.IntPtr MaxWorkingSet {g...
MinWorkingSet Property System.IntPtr MinWorkingSet {g...
...
Company ScriptProperty System.Object Company {get=$th...
CPU ScriptProperty System.Object CPU {get=$this.T...
Description ScriptProperty System.Object Description {get...
FileVersion ScriptProperty System.Object FileVersion {get...
Path ScriptProperty System.Object Path {get=$this....
Product ScriptProperty System.Object Product {get=$th...
ProductVersion ScriptProperty System.Object ProductVersion {...

PS C:\>

This example shows that objects returned from the Get-Process cmdlet have additional
property information that you didn’t know. The following example uses this information
to produce a report about Microsoft-owned processes and their folder locations. An
example of such a report would be as follows:

CHAPTER 3 PowerShell: A More In-Depth Look64

PS C:\> get-process | where-object {$_.Company -match ".*Microsoft*"} |
format-table Name, ID, Path -Autosize

Name Id Path
---- -- ----
ctfmon 4052 C:\WINDOWS\system32\ctfmon.exe
explorer 3024 C:\WINDOWS\Explorer.EXE
iexplore 2468 C:\Program Files\Internet Explorer\iexplore.exe
iexplore 3936 C:\Program Files\Internet Explorer\iexplore.exe
mobsync 280 C:\WINDOWS\system32\mobsync.exe
notepad 1600 C:\WINDOWS\system32\notepad.exe
notepad 2308 C:\WINDOWS\system32\notepad.exe
notepad 2476 C:\WINDOWS\system32\NOTEPAD.EXE
notepad 2584 C:\WINDOWS\system32\notepad.exe
OUTLOOK 3600 C:\Program Files\Microsoft Office\OFFICE11\OUTLOOK.EXE
powershell 3804 C:\Program Files\Windows PowerShell\v1.0\powershell.exe
WINWORD 2924 C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

PS C:\>

You wouldn’t get nearly this much process information by using WSH with only a single
line of code.

The Get-Member cmdlet isn’t just for objects generated from PowerShell cmdlets. You can
also use it on objects initialized from .NET classes, as shown in this example:

PS C:\> new-object System.DirectoryServices.DirectorySearcher

The goal of using the DirectorySearcher class is to retrieve user information from Active
Directory, but you don’t know what methods the returned objects support. To retrieve
this information, run the Get-Member cmdlet against a variable containing the mystery
objects, as shown in this example.

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher
PS C:\> $Searcher | get-member

TypeName: System.DirectoryServices.DirectorySearcher

Name MemberType Definition
---- ---------- ----------
add_Disposed Method System.Void add_Disposed(EventHandle...

Object Based 65

3

CreateObjRef Method System.Runtime.Remoting.ObjRef Creat...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
FindAll Method System.DirectoryServices.SearchResul...
FindOne Method System.DirectoryServices.SearchResul...
...
Asynchronous Property System.Boolean Asynchronous {get;set;}
AttributeScopeQuery Property System.String AttributeScopeQuery {g...
CacheResults Property System.Boolean CacheResults {get;set;}
ClientTimeout Property System.TimeSpan ClientTimeout {get;s...
Container Property System.ComponentModel.IContainer Con...
DerefAlias Property System.DirectoryServices.Dereference...
DirectorySynchronization Property System.DirectoryServices.DirectorySy...
ExtendedDN Property System.DirectoryServices.ExtendedDN ...
Filter Property System.String Filter {get;set;}
PageSize Property System.Int32 PageSize {get;set;}
PropertiesToLoad Property System.Collections.Specialized.Strin...
PropertyNamesOnly Property System.Boolean PropertyNamesOnly {ge...
ReferralChasing Property System.DirectoryServices.ReferralCha...
SearchRoot Property System.DirectoryServices.DirectoryEn...
SearchScope Property System.DirectoryServices.SearchScope...
SecurityMasks Property System.DirectoryServices.SecurityMas...
ServerPageTimeLimit Property System.TimeSpan ServerPageTimeLimit ...
ServerTimeLimit Property System.TimeSpan ServerTimeLimit {get...
Site Property System.ComponentModel.ISite Site {ge...
SizeLimit Property System.Int32 SizeLimit {get;set;}
Sort Property System.DirectoryServices.SortOption ...
Tombstone Property System.Boolean Tombstone {get;set;}
VirtualListView Property System.DirectoryServices.

DirectoryVi...

PS C:\>

Notice the FindAll method and the Filter property. These are object attributes that can
be used to search for information about users in an Active Directory domain. To use these
attributes the first step is to filter the information returned from DirectorySearcher by
using the Filter property, which takes a filter statement similar to what you’d find in a
Lightweight Directory Access Protocol (LDAP) statement:

PS C:\> $Searcher.Filter = ("(objectCategory=user)")

Next, you retrieve all users from the Active Directory domain with the FindAll method:

PS C:\> $Users = $Searcher.FindAll()

At this point, the $Users variable contains a collection of objects holding the distin-
guished names for all users in the Active Directory domain:

CHAPTER 3 PowerShell: A More In-Depth Look66

PS C:\> $Users

Path Properties
---- ----------
LDAP://CN=Administrator,CN=Users,DC=... {homemdb, samaccounttype, countrycod...
LDAP://CN=Guest,CN=Users,DC=taosage,... {samaccounttype, objectsid, whencrea...
LDAP://CN=krbtgt,CN=Users,DC=taosage... {samaccounttype, objectsid, whencrea...
LDAP://CN=admintyson,OU=Admin Accoun... {countrycode, cn, lastlogoff, usncre...
LDAP://CN=servmom,OU=Service Account... {samaccounttype, lastlogontimestamp,...
LDAP://CN=SUPPORT_388945a0,CN=Users,... {samaccounttype, objectsid, whencrea...
LDAP://CN=Tyson,OU=Acc... {msmqsigncertificates, distinguished...
LDAP://CN=Maiko,OU=Acc... {homemdb, msexchhomeservername, coun...
LDAP://CN=servftp,OU=Service Account... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Erica,OU=Accounts,OU... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Garett,OU=Accou... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Fujio,OU=Accounts,O... {samaccounttype, givenname, sn, when...
LDAP://CN=Kiyomi,OU=Accounts,... {samaccounttype, givenname, sn, when...
LDAP://CN=servsql,OU=Service Account... {samaccounttype, lastlogon, lastlogo...
LDAP://CN=servdhcp,OU=Service Accoun... {samaccounttype, lastlogon, lastlogo...
LDAP://CN=servrms,OU=Service Account... {lastlogon, lastlogontimestamp, msmq...

PS C:\>

NOTE

The commands in these examples use the default connection parameters for the
DirectorySearcher class. This means the connection to Active Directory uses the
default naming context. If you want to connect to a domain other than the one specified
in the default naming context, you must set the appropriate connection parameters.

Now that you have an object for each user, you can use the Get-Member cmdlet to learn
what you can do with these objects:

PS C:\> $Users | get-member

TypeName: System.DirectoryServices.SearchResult

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
get_Path Method System.String get_Path()
get_Properties Method System.DirectoryServices.ResultPropertyCollecti...
GetDirectoryEntry Method System.DirectoryServices.DirectoryEntry GetDire...
GetHashCode Method System.Int32 GetHashCode()

To collect information from these user objects, it seems as though you need to step
through each object with the GetDirectoryEntry method. To determine what data you
can retrieve from these objects, you use the Get-Member cmdlet again, as shown here:

Object Based 67

3

GetType Method System.Type GetType()
ToString Method System.String ToString()
Path Property System.String Path {get;}
Properties Property System.DirectoryServices.ResultPropertyCollecti...

PS C:\>

PS C:\> $Users[0].GetDirectoryEntry() | get-member -MemberType Property

TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
accountExpires Property System.DirectoryServices.Property...
adminCount Property System.DirectoryServices.Property...
badPasswordTime Property System.DirectoryServices.Property...
badPwdCount Property System.DirectoryServices.Property...
cn Property System.DirectoryServices.Property...
codePage Property System.DirectoryServices.Property...
countryCode Property System.DirectoryServices.Property...
description Property System.DirectoryServices.Property...
displayName Property System.DirectoryServices.Property...
distinguishedName Property System.DirectoryServices.Property...
homeMDB Property System.DirectoryServices.Property...
homeMTA Property System.DirectoryServices.Property...
instanceType Property System.DirectoryServices.Property...
isCriticalSystemObject Property System.DirectoryServices.Property...
lastLogon Property System.DirectoryServices.Property...
lastLogonTimestamp Property System.DirectoryServices.Property...
legacyExchangeDN Property System.DirectoryServices.Property...
logonCount Property System.DirectoryServices.Property...
mail Property System.DirectoryServices.Property...
mailNickname Property System.DirectoryServices.Property...
mDBUseDefaults Property System.DirectoryServices.Property...
memberOf Property System.DirectoryServices.Property...
msExchALObjectVersion Property System.DirectoryServices.Property...
msExchHomeServerName Property System.DirectoryServices.Property...
msExchMailboxGuid Property System.DirectoryServices.Property...
msExchMailboxSecurityDescriptor Property System.DirectoryServices.Property...
msExchPoliciesIncluded Property System.DirectoryServices.Property...
msExchUserAccountControl Property System.DirectoryServices.Property...
mSMQDigests Property System.DirectoryServices.Property...
mSMQSignCertificates Property System.DirectoryServices.Property...
name Property System.DirectoryServices.Property...

CHAPTER 3 PowerShell: A More In-Depth Look68

nTSecurityDescriptor Property System.DirectoryServices.Property...
objectCategory Property System.DirectoryServices.Property...
objectClass Property System.DirectoryServices.Property...
objectGUID Property System.DirectoryServices.Property...
objectSid Property System.DirectoryServices.Property...
primaryGroupID Property System.DirectoryServices.Property...
proxyAddresses Property System.DirectoryServices.Property...
pwdLastSet Property System.DirectoryServices.Property...
sAMAccountName Property System.DirectoryServices.Property...
sAMAccountType Property System.DirectoryServices.Property...
showInAddressBook Property System.DirectoryServices.Property...
textEncodedORAddress Property System.DirectoryServices.Property...
userAccountControl Property System.DirectoryServices.Property...
uSNChanged Property System.DirectoryServices.Property...
uSNCreated Property System.DirectoryServices.Property...
whenChanged Property System.DirectoryServices.Property...
whenCreated Property System.DirectoryServices.Property...

PS C:\>

NOTE

The MemberType parameter tells the Get-Member cmdlet to retrieve a specific type
of member. For example, to display the methods associated with an object, use the
get-member –MemberType Method command.

To use PowerShell effectively, you should make sure you’re familiar with the Get-Member
cmdlet. If you don’t understand how it works, figuring out what an object can and can’t
do may be at times difficult.

Now that you understand how to pull information from Active Directory, it’s time to put
together all the commands used so far:

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher
PS C:\> $Searcher.Filter = ("(objectCategory=user)")
PS C:\> $Users = $Searcher.FindAll()
PS C:\> foreach ($User in $Users){$User.GetDirectoryEntry().sAMAccountName}
Administrator
Guest
krbtgt
admintyson
servmom
SUPPORT_388945a0
Tyson
Maiko
servftp
Erica
Garett

Although the list of users in this domain isn’t long, it shows that you can interrogate a set
of objects to understand their capabilities.

The same is true for static classes, however, when attempting to use the Get-Member cmdlet
in the same manner as before creates the following error:

Object Based 69

3

Fujio
Kiyomi
servsql
servdhcp
servrms
PS C:\>

PS C:\> new-object System.Net.Dns
New-Object : Constructor not found. Cannot find an appropriate constructor for
type System.Net.Dns.
At line:1 char:11
+ New-Object <<<< System.Net.Dns
PS C:\>

As you can see, the System.Net.Dns class doesn’t have a constructor, which poses a chal-
lenge when you’re trying to find out what this class does. However, the Get-Member
cmdlet can handle this challenge. With the Static parameter, you can gather information
from static classes, as shown in this example:

PS C:\> [System.Net.Dns] | get-member -Static

TypeName: System.Net.Dns

Name MemberType Definition
---- ---------- ----------
BeginGetHostAddresses Method static System.IAsyncResult BeginGetHostAddr...
BeginGetHostByName Method static System.IAsyncResult BeginGetHostByNa...
BeginGetHostEntry Method static System.IAsyncResult BeginGetHostEntr...
BeginResolve Method static System.IAsyncResult BeginResolve(Str...
EndGetHostAddresses Method static System.Net.IPAddress[] EndGetHostAdd...
EndGetHostByName Method static System.Net.IPHostEntry EndGetHostByN...
EndGetHostEntry Method static System.Net.IPHostEntry EndGetHostEnt...
EndResolve Method static System.Net.IPHostEntry EndResolve(IA...
Equals Method static System.Boolean Equals(Object objA, O...
GetHostAddresses Method static System.Net.IPAddress[] GetHostAddres...
GetHostByAddress Method static System.Net.IPHostEntry GetHostByAddr...
GetHostByName Method static System.Net.IPHostEntry GetHostByName...
GetHostEntry Method static System.Net.IPHostEntry GetHostEntry(...
GetHostName Method static System.String GetHostName()

Now that you have information about the System.Net.Dns class, you can put it to work.
As an example, use the GetHostAddress method to resolve the IP address for the Web site
www.digg.com:

CHAPTER 3 PowerShell: A More In-Depth Look70

ReferenceEquals Method static System.Boolean ReferenceEquals(Objec...
Resolve Method static System.Net.IPHostEntry Resolve(Strin...

PS C:\>

PS C:\> [System.Net.Dns]::GetHostAddresses("www.digg.com")

IPAddressToString : 64.191.203.30
Address : 516669248
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

PS C:\>

NOTE

As you have seen, the Get-Member cmdlet can be a powerful tool. It can also be time
consuming because it’s easy to spend hours exploring what you can do with different
cmdlets and classes. To help prevent Get-Member User Stress Syndrome (GUSS), try
to limit your discovery sessions to no more than a couple of hours a day.

Extended Type System (ETS)
You might think that scripting in PowerShell is typeless because you rarely need to specify
the type for a variable. PowerShell is actually type driven, however, because it interfaces
with different types of objects from the less than perfect .NET to Windows Management
Instrumentation (WMI), Component Object Model (COM), ActiveX Data Objects (ADO),
Active Directory Service Interfaces (ADSI), Extensible Markup Language (XML), and even
custom objects. However, you typically don’t need to be concerned about object types
because PowerShell adapts to different object types and displays its interpretation of an
object for you.

In a sense, PowerShell tries to provide a common abstraction layer that makes all object
interaction consistent, despite the type. This abstraction layer is called the PSObject, a
common object used for all object access in PowerShell. It can encapsulate any base object
(.NET, custom, and so on), any instance members, and implicit or explicit access to
adapted and type-based extended members, depending on the type of base object.

www.digg.com

Furthermore, it can state its type and add members dynamically. To do this, PowerShell
uses the Extended Type System (ETS), which provides an interface that allows
PowerShell cmdlet and script developers to manipulate and change objects as needed.

NOTE

When you use the Get-Member cmdlet, the information returned is from PSObject.
Sometimes PSObject blocks members, methods, and properties from the original
object. If you want to view the blocked information, use the BaseObject property
with the PSBase standard name. For example, you could use the $Procs.PSBase |
get-member command to view blocked information for the $Procs object collection.

Needless to say, this topic is fairly advanced, as PSBase is hidden from view. The only
time you should need to use it is when the PSObject doesn’t interpret an object
correctly or you’re digging around for hidden jewels in PowerShell.

Therefore, with ETS, you can change objects by adapting their structure to your require-
ments or create new ones. One way to manipulate objects is to adapt (extend) existing
object types or create new object types. To do this, you define custom types in a custom
types file, based on the structure of the default types file, Types.ps1xml.

In the Types.ps1xml file, all types are contained in a <Type></Type> node, and each type
can contain standard members, data members, and object methods. Using this structure
as a basis, you can create your own custom types file and load it into a PowerShell session
by using the Update-TypeData cmdlet, as shown here:

Object Based 71

3

PS C:\> Update-TypeData D:\PS\My.Types.Ps1xml

You can run this command manually during each PowerShell session or add it to your
profile.ps1 file.

CAUTION

The Types.ps1xml file defines default behaviors for all object types in PowerShell. Do
not modify this file for any reason. Doing so might prevent PowerShell from working,
resulting in a “Game over”!

The second way to manipulate an object’s structure is to use the Add-Member cmdlet to
add a user-defined member to an existing object instance, as shown in this example:

PS C:\> $Procs = get-process
PS C:\> $Procs | add-member -Type scriptProperty "TotalDays" {
>> $Date = get-date
>> $Date.Subtract($This.StartTime).TotalDays}
>>
PS C:\>

This code creates a scriptProperty member called TotalDays for the collection of objects
in the $Procs variable. The scriptProperty member can then be called like any other
member for those objects, as shown in the next example:

NOTE

The $This variable represents the current object when you’re creating a script method.

CHAPTER 3 PowerShell: A More In-Depth Look72

PS C:\> $Procs | where {$_.name -Match "WINWORD"} | ft Name,
TotalDays -AutoSize

Name TotalDays
---- ---------
WINWORD 5.1238899696898148

PS C:\>

Although the new scriptProperty member isn’t particularly useful, it does demonstrate
how to extend an object. Being able to extend objects from both a scripting and cmdlet
development context is extremely useful.

Understanding Providers
Most computer systems are used to store data, often in a structure such as a file system.
Because of the amount of data stored in these structures, processing and finding informa-
tion can be unwieldy. Most shells have interfaces, or providers, for interacting with data
stores in a predictable, set manner. PowerShell also has a set of providers for presenting
the contents of data stores through a core set of cmdlets. You can then use these cmdlets
to browse, navigate, and manipulate data from stores through a common interface. To get
a list of the core cmdlets, use the following command:

PS C:\> help about_core_commands
…

ChildItem CMDLETS
Get-ChildItem

CONTENT CMDLETS
Add-Content
Clear-Content
Get-Content
Set-Content

DRIVE CMDLETS
Get-PSDrive
New-PSDrive
Remove-PSDrive

To view built-in PowerShell providers, use the following command:

Understanding Providers 73

3

ITEM CMDLETS
Clear-Item
Copy-Item
Get-Item
Invoke-Item
Move-Item
New-Item
Remove-Item
Rename-Item
Set-Item

LOCATION CMDLETS
Get-Location
Pop-Location
Push-Location
Set-Location

PATH CMDLETS
Join-Path
Convert-Path
Split-Path
Resolve-Path
Test-Path

PROPERTY CMDLETS
Clear-ItemProperty
Copy-ItemProperty
Get-ItemProperty
Move-ItemProperty
New-ItemProperty
Remove-ItemProperty
Rename-ItemProperty
Set-ItemProperty

PROVIDER CMDLETS
Get-PSProvider

PS C:\>

PS C:\> get-psprovider

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}

The preceding list displays not only built-in providers, but also the drives each provider
currently supports. A drive is an entity that a provider uses to represent a data store
through which data is made available to the PowerShell session. For example, the Registry
provider creates a PowerShell drive for the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER

Registry hives.

To see a list of all current PowerShell drives, use the following command:

CHAPTER 3 PowerShell: A More In-Depth Look74

FileSystem Filter, ShouldProcess {C, D, E, F...}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

PS C:\>

PS C:\> get-psdrive

Name Provider Root
---- -------- ----
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
U FileSystem U
Variable Variable

PS C:\>

Accessing Drives and Data
One way to access PowerShell drives and their data is with the Set-Location cmdlet. This
cmdlet, shown in the following example, changes the working location to another speci-
fied location that can be a directory, subdirectory, location stack, or Registry location:

Note that with a Registry drive, the Get-ChildItem cmdlet lists only the subkeys under a
key, not the actual Registry values. This is because Registry values are treated as properties
for a key rather than a valid item. To retrieve these values from the Registry, you use the
Get-ItemProperty cmdlet, as shown in this example:

Understanding Providers 75

3

PS C:\> set-location hklm:
PS HKLM:\> set-location software\microsoft\windows
PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> get-childitem

Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\micros
oft\windows

SKC VC Name Property
--- -- ---- --------
55 13 CurrentVersion {DevicePath, MediaPathUnexpanded, SM_...
0 16 Help {PINTLPAD.HLP, PINTLPAE.HLP, IMEPADEN...
0 36 Html Help {PINTLGNE.CHM, PINTLGNT.CHM, PINTLPAD...
1 0 ITStorage {}
0 0 Shell {}

PS HKLM:\software\microsoft\windows>

Next, use the Get-ChildItem cmdlet to list the subkeys under the Windows key:

PS HKLM:\software\microsoft\windows> get-itemproperty currentversion

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHI
NE\software\microsoft\windows\currentversion

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHI
NE\software\microsoft\windows

PSChildName : currentversion
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
DevicePath : C:\WINDOWS\inf
MediaPathUnexpanded : C:\WINDOWS\Media
SM_GamesName : Games
SM_ConfigureProgramsName : Set Program Access and Defaults
ProgramFilesDir : C:\Program Files
CommonFilesDir : C:\Program Files\Common Files
ProductId : 76487-OEM-0011903-00101
WallPaperDir : C:\WINDOWS\Web\Wallpaper
MediaPath : C:\WINDOWS\Media

As with the Get-Process command, the data returned is a collection of objects. You can
modify these objects further to produce the output you want, as this example shows:

CHAPTER 3 PowerShell: A More In-Depth Look76

ProgramFilesPath : C:\Program Files
SM_AccessoriesName : Accessories
PF_AccessoriesName : Accessories
(default) :

PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> get-itemproperty currentversion |
select ProductId

ProductId

76487-OEM-XXXXXXX-XXXXX

PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> set-location c:
PS C:\> set-location "C:\WINDOWS\system32\windowspowershell\v1.0"
PS C:\WINDOWS\system32\windowspowershell\v1.0> get-childitem about_a*

Directory: Microsoft.PowerShell.Core\FileSystem::C:\WINDOWS\system32\window
spowershell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
----- 9/8/2006 2:10 AM 5662 about_alias.help.txt
----- 9/8/2006 2:10 AM 3504 about_arithmetic_operators.help.txt
----- 9/8/2006 2:10 AM 8071 about_array.help.txt
----- 9/8/2006 2:10 AM 15137 about_assignment_operators.help.txt
----- 9/8/2006 2:10 AM 5622 about_associative_array.help.txt
----- 9/8/2006 2:10 AM 3907 about_automatic_variables.help.txt
...

PS C:\WINDOWS\system32\windowspowershell\v1.0>

Accessing data from a FileSystem drive is just as simple. The same type of command logic
is used to change the location and display the structure:

What’s different is that data is stored in an item instead of being a property of that item.
To retrieve data from an item, use the Get-Content cmdlet, as shown in this example:

Understanding Providers 77

3

PS C:\WINDOWS\system32\windowspowershell\v1.0> get-content
about_Alias.help.txt
TOPIC

Aliases

SHORT DESCRIPTION
Using pseudonyms to refer to cmdlet names in the Windows PowerShell

LONG DESCRIPTION
An alias is a pseudonym, or "nickname," that you can assign to a
cmdlet so that you can use the alias in place of the cmdlet name.
The Windows PowerShell interprets the alias as though you had
entered the actual cmdlet name. For example, suppose that you want
to retrieve today's date for the year 1905. Without an alias, you
would use the following command:

Get-Date -year 1905
...

PS C:\WINDOWS\system32\windowspowershell\v1.0>

NOTE

Not all drives are based on a hierarchical data store. For example, the Environment,
Function, and Variable PowerShell providers aren’t hierarchical. Data accessed through
these providers is in the root location on the associated drive.

Mounting a Drive
PowerShell drives can be created and removed, which is handy when you’re working with
a location or set of locations frequently. Instead of having to change the location or use
an absolute path, you can create new drives (also referred to as “mounting a drive” in
PowerShell) as shortcuts to those locations. To do this, use the New-PSDrive cmdlet,
shown in the following example:

PS C:\> new-psdrive -name PSScripts -root D:\Dev\Scripts -psp FileSystem

Name Provider Root CurrentLocation
---- -------- ---- ---------------
PSScripts FileSystem D:\Dev\Scripts

PS C:\> get-psdrive

To remove a drive, use the Remove-PSDrive cmdlet, as shown here:

CHAPTER 3 PowerShell: A More In-Depth Look78

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER software
HKLM Registry HKEY_LOCAL_MACHINE ...crosoft\windows
PSScripts FileSystem D:\Dev\Scripts
U FileSystem U:\
Variable Variable

PS C:\>

PS C:\> remove-psdrive -name PSScripts
PS C:\> get-psdrive

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER software
HKLM Registry HKEY_LOCAL_MACHINE ...crosoft\windows
U FileSystem U:\
Variable Variable

PS C:\>

Understanding Errors
PowerShell errors are divided into two types: terminating and nonterminating.
Terminating errors, as the name implies, stop a command. Nonterminating errors are
generally just reported without stopping a command. Both types of errors are reported in

the $Error variable, which is a collection of errors that have occurred during the current
PowerShell session. This collection contains the most recent error, as indicated by
$Error[0] up to $MaximumErrorCount, which defaults to 256.

Errors in the $Error variable can be represented by the ErrorRecord object. It contains
error exception information as well as a number of other properties that are useful for
understanding why an error occurred

The next example shows the information that is contained in InvocationInfo property of
an ErrorRecord object:

Understanding Errors 79

3

PS C:\> $Error[0].InvocationInfo

MyCommand : Get-ChildItem
ScriptLineNumber : 1
OffsetInLine : -2147483648
ScriptName :
Line : dir z:
PositionMessage :

At line:1 char:4
+ dir <<<< z:

InvocationName : dir
PipelineLength : 1
PipelinePosition : 1

PS C:\>

Based on this information, you can determine a number of details about $Error[0],
including the command that caused the error to be thrown. This information is crucial to
understanding errors and handling them effectively.

Use the following command to see a full list of ErrorRecord properties:

PS C:\> $Error[0] | get-member -MemberType Property

TypeName: System.Management.Automation.ErrorRecord

Name MemberType Definition
---- ---------- ----------
CategoryInfo Property System.Management.Automation.ErrorCategoryI...
ErrorDetails Property System.Management.Automation.ErrorDetails E...
Exception Property System.Exception Exception {get;}
FullyQualifiedErrorId Property System.String FullyQualifiedErrorId {get;}

Table 3.1 shows the definitions for each of the ErrorRecord properties that are listed in the
preceding example:

TABLE 3.1 ErrorRecord Property Definitions

Property Definition

CategoryInfo Indicates under which category an error is classified
ErrorDetails Can be null, but when used provides additional information about

the error
Exception The error that occurred
FullyQualifiedErrorId Identifies an error condition more specifically
InvocationInfo Can be null, but when used explains the context in which the error

occurred
TargetObject Can be null, but when used indicates the object being operated on

Error Handling
Methods for handling errors in PowerShell can range from simple to complex. The simple
method is to allow PowerShell to handle the error. Depending on the type of error, the
command or script might terminate or continue. However, if the default error handler
doesn’t fit your needs, you can devise a more complex error-handling scheme by using
the methods discussed in the following sections.

Method One: cmdlet Preferences
In PowerShell, ubiquitous parameters are available to all cmdlets. Among them are the
ErrorAction and ErrorVariable parameters, used to determine how cmdlets handle
nonterminating errors, as shown in this example:

CHAPTER 3 PowerShell: A More In-Depth Look80

InvocationInfo Property System.Management.Automation.InvocationInfo...
TargetObject Property System.Object TargetObject {get;}

PS C:\>

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue
PS C:\> if ($Err){write-host $Err -Foregroundcolor Red}
Cannot find drive. A drive with name 'z' does not exist.
PS C:\>

The ErrorAction parameter defines how a cmdlet behaves when it encounters a nontermi-
nating error. In the preceding example, ErrorAction is defined as SilentlyContinue,
meaning the cmdlet continues running with no output if it encounters a nonterminating
error. Other options for ErrorAction are as follows:

• Continue—Print error and continue (default action)

• Inquire—Ask users whether they want to continue, halt, or suspend

• Stop—Halt execution of the command or script

NOTE

The term nonterminating has been emphasized in this section because a terminating
error bypasses the defined ErrorAction and is delivered to the default or custom
error handler.

The ErrorVariable parameter defines the variable name for the error object generated by
a nonterminating error. As shown in the previous example, ErrorVariable is defined as
Err. Notice the variable name doesn’t have the $ prefix. However, to access
ErrorVariable outside a cmdlet, you use the variable’s name with the $ prefix ($Err).
Furthermore, after defining ErrorVariable, the resulting variable is valid for the current
PowerShell session or associated script block. This means other cmdlets can append error
objects to an existing ErrorVariable by using a + prefix, as shown in this example:

Error Handling 81

3

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue
PS C:\> get-childitem y: -ErrorVariable +Err -ErrorAction SilentlyContinue
PS C:\> write-host $Err[0] -Foregroundcolor Red
Cannot find drive. A drive with name 'z' does not exist.
PS C:\> write-host $Err[1] -Foregroundcolor Red
Cannot find drive. A drive with name 'y' does not exist.
PS C:\>

Method Two: Trapping Errors
When encountering a terminating error, PowerShell’s default behavior is to display the
error and halt the command or script execution. If you want to use custom error handling
for a terminating error, you must define an exception trap handler to prevent the termi-
nating error (ErrorRecord) from being sent to the default error-handling mechanism. The
same holds true for nonterminating errors as PowerShell’s default behavior is to just display
the error and continue the command or script execution.

To define a trap, you use the following syntax:

trap ExceptionType {code; keyword}

The first part is ExceptionType, which specifies the type of error a trap accepts. If no
ExceptionType is defined, a trap accepts all errors. The code part can consist of a
command or set of commands that run after an error is delivered to the trap. Defining

commands to run by a trap is optional. The last part, keyword, is what determines
whether the trap allows the statement block where the error occurred to execute or
terminate.

Supported keywords are as follows:

• Break—Causes the exception to be rethrown and stops the current scope from
executing

• Continue—Allows the current scope execution to continue at the next line where
the exception occurred

• Return [argument]—Stops the current scope from executing and returns the argu-
ment, if specified

If a keyword isn’t specified, the trap uses the keyword Return [argument]; argument is
the ErrorRecord that was originally delivered to the trap.

Trap Examples
The following two examples show how traps can be defined to handle errors. The first
trap example shows a trap being used in conjunction with a nonterminating error that is
produced from an invalid DNS name being given to the System.Net.Dns class. The second
example shows a trap being again used in conjunction with a nonterminating error that is
produced from the Get-Item cmdlet. However, in this case, because the ErrorAction
parameter has been defined as Stop, the error is in fact a terminating error that is then
handled by the trap.

Example one: errortraps1.ps1

CHAPTER 3 PowerShell: A More In-Depth Look82

$DNSName = "www.-baddnsname-.com"

trap [System.Management.Automation.MethodInvocationException]{

write-host ("ERROR: " + $_) -Foregroundcolor Red; Continue}

write-host "Getting IP address for" $DNSName

write-host ([System.Net.Dns]::GetHostAddresses("www.$baddnsname$.com"))

write-host "Done Getting IP Address"

PS C:\> .\errortraps1.ps1
Getting IP address for www.-baddnsname-.com
ERROR: Exception calling "GetHostAddresses" with "1" argument(s): "No such host
is known"
Done Getting IP Address
PS C:\>

The $_ parameter in this example represents the ErrorRecord that was delivered to the trap.

Output:

Example two: errortraps2.ps1

Error Handling 83

3

write-host "Changing drive to z:"

trap {write-host("[ERROR] " + $_) -Foregroundcolor Red; Continue}

get-item z: -ErrorAction Stop

$TXTFiles = get-childitem *.txt -ErrorAction Stop

write-host "Done getting items"

NOTE

A cmdlet doesn’t generate a terminating error unless there’s a syntax error. This
means a trap doesn’t catch nonterminating errors from a cmdlet unless the error is
transformed into a terminating error by setting the cmdlet’s ErrorAction to Stop.

Output:

PS C:\> .\errortraps2.ps1
Changing drive to z:
[ERROR] Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find drive. A drive
with name 'z' does not exist.
Done getting items
PS C:\>

Trap Scopes
A PowerShell scope, as discussed in Chapter 2, “PowerShell Basics,” determines how traps
are executed. Generally, a trap is defined and executed within the same scope. For
example, you define a trap in a certain scope; when a terminating error is encountered in
that scope, the trap is executed. If the current scope doesn’t contain a trap and an outer
scope does, any terminating errors encountered break out of the current scope and are
delivered to the trap in the outer scope.

Method Three: The Throw Keyword
In PowerShell, you can generate your own terminating errors. This doesn’t mean causing
errors by using incorrect syntax. Instead, you can generate a terminating error on purpose
by using the throw keyword, as shown in the next example if a user doesn’t define the
argument for the MyParam parameter when trying to run the MyParam.ps1 script. This
type of behavior is very useful when data from functions, cmdlets, data sources, applica-
tions, etc. is not what is expected and hence may prevent the script or set of commands
from executing correctly further into the execution process.

Script:

CHAPTER 3 PowerShell: A More In-Depth Look84

param([string]$MyParam = $(throw write-host "You did not define MyParam"

-Foregroundcolor Red))

write-host $MyParam

Output:

PS C:\ .\MyParam.ps1
You did not define MyParam
ScriptHalted
At C:\MyParam.ps1:1 char:33
+ param([string]$MyParam = $(throw <<<< write-host "You did not define MyParam
" -Foregroundcolor Red))
PS C:\>

PowerShell Profiles
A PowerShell profile is a saved collection of settings for customizing the PowerShell envi-
ronment. There are four types of profiles, loaded in a specific order each time PowerShell
starts. The following sections explain these profile types, where they should be located,
and the order in which they are loaded.

The All Users Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\profile.ps1.
Settings in the All Users profile are applied to all PowerShell users on the current
machine. If you plan to configure PowerShell settings across the board for users on a
machine, then this would be the profile to use.

The All Users Host-Specific Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\ShellID_
profile.ps1. Settings in the All Users host-specific profile are applied to all users of the
current shell (by default, the PowerShell console). PowerShell supports the concept of
multiple shells or hosts. For example, the PowerShell console is a host and the one most
users use exclusively. However, other applications can call an instance of the PowerShell
runtime to access and run PowerShell commands and scripts. An application that does
this is called a hosting application and uses a host-specific profile to control the
PowerShell configuration. The host-specific profile name is reflected by the host’s
ShellID. In the PowerShell console, the ShellID is the following:

Putting this together, the PowerShell console’s All Users host-specific profile is named
Microsoft.PowerShell_profile.ps1. For other hosts, the ShellID and All Users host-
specific profile names are different. For example, the PowerShell Analyzer (www.power-
shellanalyzer.com) is a PowerShell host that acts as a rich graphical interface for the
PowerShell environment. Its ShellID is PowerShellAnalyzer.PSA, and its All Users host-
specific profile name is PowerShellAnalyzer.PSA_profile.ps1.

The Current User’s Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\profile.ps1.
Users who want to control their own profile settings can use the current user’s profile.
Settings in this profile are applied only to the user’s current PowerShell session and
doesn’t affect any other users.

The Current User’s Host-Specific Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\ShellID_
profile.ps1. Like the All Users host-specific profile, this profile type loads settings for the
current shell. However, the settings are user specific.

NOTE

When you start the shell for the first time, you might see a message indicating that
scripts are disabled and no profiles are loaded. You can modify this behavior by chang-
ing the PowerShell execution policy, discussed in the following section.

Understanding Security
When WSH was released with Windows 98, it was a godsend for Windows administrators
who wanted the same automation capabilities as their UNIX brethren. At the same time,
virus writers quickly discovered that WSH also opened up a large attack vector against
Windows systems.

Almost anything on a Windows system can be automated and controlled by using WSH,
which is an advantage for administrators. However, WSH doesn’t provide any security in
script execution. If given a script, WSH runs it. Where the script comes from or its
purpose doesn’t matter. With this behavior, WSH became known more as a security
vulnerability than an automation tool.

Understanding Security 85

3

PS C:\ $ShellId
Microsoft.PowerShell
PS C:\

www.powershellanalyzer.com
www.powershellanalyzer.com

Execution Policies
Because of past criticisms of WSH’s security, when the PowerShell team set out to build a
Microsoft shell, the team decided to include an execution policy to mitigate the security
threats posed by malicious code. An execution policy defines restrictions on how
PowerShell allows scripts to run or what configuration files can be loaded. PowerShell has
four execution policies, discussed in more detail in the following sections: Restricted,
AllSigned, RemoteSigned, and Unrestricted.

Restricted

By default, PowerShell is configured to run under the Restricted execution policy. This
execution policy is the most secure because it allows PowerShell to operate only in an
interactive mode. This means no scripts can be run, and only configuration files digitally
signed by a trusted publisher are allowed to run or load.

AllSigned

The AllSigned execution policy is a notch under Restricted. When this policy is
enabled, only scripts or configuration files that are digitally signed by a publisher you
trust can be run or loaded. Here’s an example of what you might see if the AllSigned
policy has been enabled:

CHAPTER 3 PowerShell: A More In-Depth Look86

PS C:\Scripts> .\evilscript.ps1
The file C:\Scripts\evilscript.ps1 cannot be loaded. The file
C:\Scripts\evilscript.ps1 is not digitally signed. The script will not
execute on the system. Please see "get-help about_signing" for more
details.
At line:1 char:16
+ .\evilscript.ps1 <<<<
PS C:\Scripts>

Signing a script or configuration file requires a code-signing certificate. This certificate can
come from a trusted certificate authority (CA), or you can generate one with the
Certificate Creation Tool (Makecert.exe). Usually, however, you want a valid code-signing
certificate from a well-known trusted CA, such as Verisign, Thawte, or your corporation’s
internal public key infrastructure (PKI). Otherwise, sharing your scripts or configuration
files with others might be difficult because your computer isn’t a trusted CA by default.

NOTE

Chapter 4, “Code Signing,” explains how to obtain a valid trusted code-signing certifi-
cate. Reading this chapter is strongly recommended because of the importance of digi-
tally signing scripts and configuration files.

RemoteSigned

The RemoteSigned execution policy is designed to prevent remote PowerShell scripts and
configuration files that aren’t digitally signed by a trusted publisher from running or
loading automatically. Scripts and configuration files that are locally created can be
loaded and run without being digitally signed, however.

A remote script or configuration file can be obtained from a communication application,
such as Microsoft Outlook, Internet Explorer, Outlook Express, or Windows Messenger.
Running or loading a file downloaded from any of these applications results in the
following error message:

Understanding Security 87

3

PS C:\Scripts> .\interscript.ps1
The file C:\Scripts\interscript.ps1 cannot be loaded. The file
C:\Scripts\interscript.ps1 is not digitally signed. The script will
not execute on the system. Please see "get-help about_signing" for
more details..
At line:1 char:17
+ .\interscript.ps1 <<<<
PS C:\Scripts>

To run or load an unsigned remote script or configuration file, you must specify whether
to trust the file. To do this, right-click the file in Windows Explorer and click Properties.
In the General tab, click the Unblock button (see Figure 3.1).

FIGURE 3.1 Trusting a remote script or configuration file

After you trust the file, the script or configuration file can be run or loaded. If it’s digitally
signed but the publisher isn’t trusted, PowerShell displays the following prompt:

CHAPTER 3 PowerShell: A More In-Depth Look88

PS C:\Scripts> .\signed.ps1

Do you want to run software from this untrusted publisher?
File C:\Scripts\signed.ps1 is published by CN=companyabc.com, OU=IT,
O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on
your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"):

In this case, you must choose whether to trust the file content.

NOTE

Chapter 4 explains the options in this prompt in more detail.

Unrestricted

As the name suggests, the Unrestricted execution policy removes almost all restrictions
for running scripts or loading configuration files. All local or signed trusted files can run
or load, but for remote files, PowerShell prompts you to choose an option for running or
loading that file, as shown here:

PS C:\Scripts> .\remotescript.ps1

Security Warning
Run only scripts that you trust. While scripts from the Internet can
be useful, this script can potentially harm your computer. Do you want
to run
C:\Scripts\remotescript.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is “D”):

Setting the Execution Policy
To change the execution policy, you use the Set-ExecutionPolicy cmdlet, shown here:

PS C:\> set-executionpolicy AllSigned
PS C:\>

If you want to know the current execution policy, use the Get-ExecutionPolicy cmdlet:

Understanding Security 89

3

PS C:\> get-executionpolicy
AllSigned
PS C:\>

By default, when PowerShell is first installed, the execution policy is set to Restricted. As
you know, default settings never stay default for long. In addition, if PowerShell is
installed on many machines, the likelihood of its execution policy being set to
Unrestricted increases.

Fortunately, you can control the PowerShell execution policy through a Registry setting.
This setting is a REG_SZ value named ExecutionPolicy, which is located in the
HKLM\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell key.
Controlling the execution policy through the Registry means you can enforce a policy
setting across many machines managed by a Group Policy Object (GPO).

In the past, creating a GPO to control the execution policy was simple because the
PowerShell installation includes a Group Policy Administrative Template (ADM). However,
as of the PowerShell RC2 release, the ADM is no longer part of the installation and may
or may not be available in a separate PowerShell download. If Microsoft doesn’t provide
an ADM to control the execution policy, you can always create your own, as shown in the
following example:

CLASS MACHINE

CATEGORY !!PowerShell

POLICY !!Security

KEYNAME "SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"

EXPLAIN !!PowerShell_ExecutionPolicy

PART !!ExecutionPolicy EDITTEXT REQUIRED

VALUENAME "ExecutionPolicy"

END PART

END POLICY

END CATEGORY

[strings]

PowerShell=PowerShell

Security=Security Settings

PowerShell_ExecutionPolicy=If enabled, this policy will set the PowerShell

execution policy on a machine to the defined value. Execution policy values can be

Restricted, AllSigned, RemoteSigned, and Unrestricted.

Executionpolicy=Execution Policy

You can find a working version of this ADM on the PowerShell Unleashed Reference Web
site: www.samspublishing.com. Although the PowerShellExecutionPolicy.adm file has
been tested and should work in your environment, note that the execution policy settings
in this file are considered preference settings. Preference settings are GPOs that are
Registry values found outside the approved Group Policy Registry trees. When a GPO
containing preference settings goes out of scope, the preference settings aren’t removed
from the Registry.

NOTE

As with everything provided on the PowerShell Unleashed Reference Web site, test the
ADM in a non-production environment before deploying a GPO that uses it.

To configure the PowerShellExecutionPolicy.adm file, follow these steps:

1. Log on to a GPO management machine as the GPO administrator.

2. Using the Group Policy MMC, create a GPO named PowerShell.

3. In the console tree, click to expand Computer Configuration and then
Administrative Templates.

4. Right-click Administrative Templates and click Add/Remove Templates in the
shortcut menu.

5. Navigate to the folder with the PowerShellExecutionPolicy.adm file. Select the file,
click Open, and then click Close. The PowerShell node is then displayed under the
Administrative Templates node.

6. Click the Administrative Templates node, and then click View, Filtering from the
Group Policy MMC menu. Click to clear the Only show policy settings that can be
fully managed checkbox. Clearing this option allows you to manage preference
settings.

7. Next, click the PowerShell node under Administrative Templates.

8. In the details pane, right-click Security Settings and click Properties in the shortcut
menu.

9. Click Enabled.

10. Set the Execution Policy to one of these values: Restricted, AllSigned,
RemoteSigned, or Unrestricted.

11. Close the GPO, and then close the Group Policy MMC.

Controlling the execution policy through a GPO preference setting might seem like a less
then perfect solution. After all, a preference setting doesn’t offer the same level of security
as an execution policy setting, so users with the necessary rights can modify it easily. This
lack of security is probably why Microsoft removed the original ADM file from

CHAPTER 3 PowerShell: A More In-Depth Look90

www.samspublishing.com

PowerShell. A future release of PowerShell might allow controlling the execution policy
with a valid GPO policy setting.

Additional Security Measures
Execution policies aren’t the only security layer Microsoft implemented in PowerShell.
PowerShell script files with the .ps1 extension can’t be run from Windows Explorer
because they are associated with Notepad. In other words, you can’t just double-click a
.ps1 file to run it. Instead, PowerShell scripts must run from a PowerShell session by
using the relative or absolute path or through the cmd command prompt by using the
PowerShell executable.

Another security measure, explained in Chapter 2, is that to run or open a file in the
current directory from the PowerShell console, you must prefix the command with
.\ or ./. This feature prevents PowerShell users from accidentally running a command
or PowerShell script without specifying its execution explicitly.

Last, by default, there’s no method for connecting to or calling PowerShell remotely.
However, that doesn’t mean you can’t write an application that allows remote PowerShell
connections. In fact, it has been done. If you’re interested in learning how, download the
PowerShell Remoting beta from www.gotdotnet.com/workspaces/workspace.aspx?id=
ce09cdaf-7da2-4f1c-bed3-f8cb35de5aea.

The PowerShell Language
From this point on, this book varies from the usual format of many books on scripting
languages, which try to explain scripting concepts instead of showing you actual working
scripts. This book focuses on the practical applications of PowerShell.

It’s assumed you have a basic understanding of scripting. In addition, because the
PowerShell scripting language is similar to Perl, C#, and even VBScript, there’s no need
to spend time reviewing for loops, if...then statements, and other fundamentals of
scripting.

Granted, there are some unique aspects to the PowerShell language, but you can consult
the PowerShell documentation for that information. This is not a language reference
book; it’s about how PowerShell can be applied in the real world. For more detailed infor-
mation about the PowerShell language, you can download the PowerShell User Guide
from www.microsoft.com/downloads/details.aspx?FamilyId=B4720B00-9A66-430F-BD56-
EC48BFCA154F&displaylang=en.

Summary
In this chapter, you have delved deeper into what PowerShell is and how it works. You
reviewed such topics as Powershell’s Providers, how it handles errors, its profiles, and its
execution policies. However, of the items reviewed the most important concept to take
from this chapter is that PowerShell is built from and around the .NET Framework. As

Summary 91

3

www.gotdotnet.com/workspaces/workspace.aspx?id=ce09cdaf-7da2-4f1c-bed3-f8cb35de5aea
www.gotdotnet.com/workspaces/workspace.aspx?id=ce09cdaf-7da2-4f1c-bed3-f8cb35de5aea
www.microsoft.com/downloads/details.aspx?FamilyId=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en

such, PowerShell is not like other shells because it is an object-based shell that attempts to
abstract all objects into a common form that can be used without modification (parsing) in
your commands and scripts. Going forward this and the knowledge that you have learned
from Chapters 2 and 3 will be the keystone from which you shall explore PowerShell
scripting. Moving through each chapter, the scripts will increase in complexity as we
review different aspects of how PowerShell can be used for Windows automation.

CHAPTER 3 PowerShell: A More In-Depth Look92

IN THIS CHAPTER

. Introduction

. What Is Code Signing?

. Obtaining a Code-Signing
Certificate

. Signing PowerShell Scripts

. Verifying Digital Signatures

. Signed Code Distribution

CHAPTER 4

Code Signing

Introduction
In an effort to learn how to sign PowerShell scripts and
configuration files, you have searched the Internet, read
several blogs about code signing, reviewed the PowerShell
documentation, and even browsed through some
PowerShell books. Yet the more you read about code
signing, the more confused you are. Finally, in frustration,
you open your PowerShell console and enter the following
command:

set-executionpolicy unrestricted

Before you enter this command, remember what you
learned about execution policies in Chapter 3, “PowerShell:
A More In-Depth Look.” Using the Unrestricted setting
negates an important security layer that was designed to
prevent malicious code from running on your system.
Code signing is another essential component of PowerShell
security, but many people believe it’s too complicated to
learn and set their execution policies to Unrestricted to
avoid having to use it. In response to an entry on script
signing at Scott Hanselman’s blog (www.hanselman.com/
blog), one person commented that “Handling code signing
certificates is way over the head of most users, including
average developers and admins.” This statement indicates a
real need that should be addressed—hence this chapter
devoted to code signing. Code signing seems complicated
on the surface, but with some clear instructions, the
process is easy to understand. Scripters, developers, and
administrators should be familiar with it as an important
part of their overall security efforts.

www.hanselman.com/blog
www.hanselman.com/blog

What Is Code Signing?
In short, code signing is the process of digitally signing scripts, executables, DLLs, and so
forth to establish a level of trust for the code. The trust granted to digitally signed code is
based on two assumptions. One, a signed piece of code ensures that the code hasn’t been
altered or corrupted since being signed. Two, the digital signature serves to prove the
identity of the code’s author, which helps you determine whether the code is safe for
execution.

These two assumptions are a way to ensure the integrity and authenticity of code.
However, these assumptions alone are no guarantee that signed code is safe to run. For
these two assumptions to be considered valid, you need the digital signature and the infra-
structure that establishes a mechanism for identifying the digital signature’s originator.

A digital signature is based on public key cryptography, which has algorithms used for
encryption and decryption. These algorithms generate a key pair consisting of a private
key and a public key. The private key is kept secret so that only the owner has access to it,
but the public key can be distributed to other entities through some form of secure inter-
action. Depending on the type of interaction, one key is used to lock (encrypt) the
communication, and the other key is used unlock (decrypt) the communication. In digital
signatures, the private key is used to generate a signature, and the public key is used to
validate the generated signature. The process is as follows:

1. A one-way hash of the content (documents, code, and so forth) being signed is
generated by using a cryptographic digest.

2. The hash is then encrypted with the private key, resulting in the digital signature.

3. Next, the content is transmitted to the recipient.

4. The recipient then creates another one-way hash of the content and decrypts the
hash by using the sender’s public key.

5. Finally, the recipient compares the two hashes. If both hashes are the same, the
digital signature is valid and the content hasn’t been modified.

NOTE

A one-way hash (also known as a message digest, fingerprint, or compression function)
is a cryptographic algorithm that turns data into a fixed-length binary sequence. The
term one-way comes from the fact that it is difficult to derive the original data from the
resulting sequence.

To associate an entity, such as an organization, a person, or a computer, with a digital
signature, a digital certificate is used. A digital certificate consists of the public key and
identifying information about the key pair owner. To ensure a digital certificate’s integrity,
it’s also digitally signed. A digital certificate can be signed by its owner or a trustworthy
third party called a certificate authority (CA).

CHAPTER 4 Code Signing94

The act of associating code with the entity that created and published it removes the
anonymity of running code. Furthermore, associating a digital signature with a code-
signing certificate is much like using a brand name to establish trust and reliability. Armed
with this information, users of PowerShell scripts and configuration files can make
informed decisions about running a script or loading a configuration file. This, in a
nutshell, is why code signing is an important aspect of the PowerShell security framework.

Obtaining a Code-Signing Certificate
There are two methods for obtaining a code-signing certificate: generating self-signed
certificates and using a CA from a valid public key infrastructure (PKI).

Generating a self-signed certificate for signing your PowerShell scripts and configuration
files is simpler and quicker and has the advantage of not costing anything. However, no
independent third party verifies the certificate’s authenticity, so it doesn’t have the same
level of trust that’s expected from code signing. As a result, no other entity would trust
your certificate by default. To distribute your PowerShell script or configuration file to
other machines, your certificate would have to be added as a trusted root CA and a
trusted publisher.

Although changing what an entity trusts is possible, there are two problems. One, entities
outside your sphere of control might not choose to trust your certificate because there’s
no independent method for verifying who you are. Two, if the private key associated with
your self-signed certificate becomes compromised or invalid, there’s no way to manage
your certificate’s validity on other entities. Given these problems, limiting the use of self-
signed certificates to a local machine or for testing purposes is recommended.

If you plan to digitally sign your scripts and configuration files so that they can be used
in an enterprise or even the public realm, you should consider the second method of
obtaining a code-signing certificate: a CA from a valid PKI. A valid PKI can mean a well-
known and trusted commercial organization, such as www.globalsign.net, www.thawte.
com, or www.verisign.com, or an internal PKI owned and operated by your organization.
Obtaining a code-signing certificate from an external PKI can be quick and easy, as long
as you keep a few caveats in mind.

First, a certificate must be purchased from the owner of the external PKI. Second, because
you’re purchasing the certificate from an outside entity, you’re placing a lot of trust in the
organization’s integrity. For these reasons, code-signing certificates from commercial PKIs
should be limited to certificates used to sign scripts and configuration files for public
distribution.

Therefore, an internal PKI should be used for scripts and configuration files not meant for
public consumption. Keep in mind that deploying and managing an internal PKI takes
planning, effort, and money (Hardware Security Modules (HSMs), security consultants,
and so forth can be expensive). Most organizations tend to shy away from the effort
required to set up a PKI. Instead, they bring up CAs ad hoc, purchase certificates from
commercial PKIs, or ignore PKI requirements. A commercial PKI might not provide the
level of trust your organization needs, and the ad hoc approach isn’t recommended

Obtaining a Code-Signing Certificate 95

4

www.globalsign.net
www.thawte.com
www.thawte.com
www.verisign.com

because it reduces trust of certificates generated by rogue CAs, which are CAs that have a
low level of assurance around their integrity. Having no valid PKI infrastructure could
make internal distribution of digitally signed files difficult. Last, organizations that ignore
PKI requirements illustrate another drawback of using an internal PKI: time.

If there’s no PKI in your organization, obtaining a code-signing certificate might take an
extended period of time. PKIs do not materialize overnight. If you have identified a PKI
requirement for your scripts, there are probably additional PKI requirements in your orga-
nization. These requirements will need to be identified and considered before a PKI is
deployed. Trying to drive a PKI deployment around your needs alone isn’t the best
approach for an infrastructure service that needs to meet the needs of an entire organiza-
tion. After you have presented the PKI requirement to your organization, you might have
to wait for the services to be provided. However, after the PKI is in place, you can obtain
code-signing certificates knowing that the infrastructure fully supports the distribution of
your signed PowerShell scripts and configuration files.

Method One: Self-Signed Certificate
This method of creating a self-signed certificate is based on using the makecert utility,
which is part of the .NET Framework Software Development Kit (SDK). Follow these steps:

1. Download the latest Microsoft .NET Framework SDK from http://msdn2.microsoft.
com/en-us/netframework/aa731542.aspx. At the time of this writing, the current
.NET Framework SDK version is 2.0.

2. Install the SDK on the machine where you want to generate the self-signed
certificate.

3. Locate the makecert utility on your system. The default location is C:\Program
Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.

4. Open up a cmd command prompt and change the working directory to the location
of the makecert utility using the cd command.

5. Create a self-signed certificate by using the following command:

CHAPTER 4 Code Signing96

makecert -r -pe -n “CN=CertificateCommonName” -b 01/01/2000 -e 01/01/2099 –eku

1.3.6.1.5.5.7.3.3 -ss My

You should see output similar to the following:

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin>makecert -r -
pe -n "CN= Turtle Code Signing" -b 01/01/2000 -e 01/01/2099 -eku
1.3.6.1.5.5.7.3.3 -ss My
Succeeded

http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx
http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx

6. Finally, use the following PowerShell command to verify that the certificate was
installed:

Obtaining a Code-Signing Certificate 97

4

PS C:\> get-childitem cert:\CurrentUser\My -codesign

Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject
---------- -------
944E910757A862B53DE3113249E12BCA9C7DD0DE CN=Turtle Code Signing

PS C:\>

Method Two: CA Signed Certificate
This method is based on obtaining a code-signing certificate from a Microsoft Windows
CA. These steps assume a PKI has been deployed at your organization. If not, installing
Windows Certificate Services to meet your immediate need isn’t recommended. Follow
these steps to request a code-signing certificate:

1. Request that your PKI administrator create and enable a code-signing certificate
template for your PowerShell scripts and configuration files.

2. Use Internet Explorer to access the Certificate Services Web Enrollment site at
https://CAServerName/certsrv (replacing CAServerName with the name of your
server).

3. Click the Request a Certificate link.

4. On the Request a Certificate page, click the Advanced certificate request link.

5. On the Advanced Certificate Request page, click the Create and submit a request
to this CA link.

6. In the Certificate Template section, click to select the code-signing certificate your
PKI administrator created.

7. Enter the rest of the identifying information and certificate request options accord-
ing to your organization’s certificate policy. You can use Figure 4.1 as a guideline.

8. Click the Submit button.

9. In the Potential Scripting Violation dialog box that opens (see Figure 4.2), click Yes
to continue.

https://CAServerName/certsrv

FIGURE 4.1 Example of requesting a code-signing certificate

CHAPTER 4 Code Signing98

FIGURE 4.2 Potential Scripting Violation message box

10. Next, if applicable, set the private key security level based on your organization’s
certificate policy (see Figure 4.3), and then click OK.

FIGURE 4.3 Creating a new RSA signature key dialog box

11. If your organization’s certificate policy requires approval from a certificate manager,
then ask your certificate manager to approve the certificate request you just submit-
ted. If approval isn’t required, go to step 16.

12. After the certificate request has been approved, use Internet Explorer to access
the Certificate Services Web Enrollment site at https://CAServerName/certsrv
(replacing CAServerName with the name of your server).

13. Click the View the status of a pending certificate request link.

14. On the next page, click the appropriate certificate request link.

15. On the Certificate Issued page, click the Install this certificate link.

16. In the Potential Scripting Violation dialog box that opens (see Figure 4.4), click Yes
to continue.

Obtaining a Code-Signing Certificate 99

4

FIGURE 4.4 Potential Scripting Violation message box

17. Finally, the Certificate Services Web Enrollment site states that the certificate was
installed successfully. Use the following PowerShell command to verify the certifi-
cate installation status:

PS C:\> get-childitem cert:\CurrentUser\My -codesign

Directory:
Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject
---------- -------
5CBCE258711676061836BC45C1B4ACA6F6C7D09E
E=Richard.Stallman@goodcode.com, C...

PS C:\>

The PVK Digital Certificate Files Importer
When a digital certificate is generated, sometimes the private key is stored in a PVK
(private key) file, and the corresponding digital certificate is stored in a Software
Publishing Certificate (SPC) file. When a code-signing certificate has been obtained from

https://CAServerName/certsrv

Verisign or Thawte, for example, the digital certificate is issued to you as a SPC and PVK
file combination. If you want to use the code-signing certificate to digitally sign
PowerShell scripts or configuration files, you must import the SPC and PVK file combina-
tion into your personal certificate store.

NOTE

A certificate store is a location that resides on a computer or device that is used to
store certificate information. In Windows, you can use the Certificates MMC snap-in to
display the certificate store for a user, a computer, or a service according. Your
personal certificate store is referring to your own “user” certificate store.

To import the SPC+PVK, you use the Microsoft utility called PVK Digital Certificate
Files Importer. You can download it from the Microsoft Download Web site at
www.microsoft.com/downloads/details.aspx?FamilyID=F9992C94-B129-46BC-B240-
414BDFF679A7&displaylang=EN.

Next, enter the following command to import the SPC+PVK, substituting your own file-
names:

CHAPTER 4 Code Signing100

pvkimprt -IMPORT “mycertificate.spc” “myprivatekey.pvk”

Signing PowerShell Scripts
When signing a PowerShell script, you use the Set-AuthenticodeSignature cmdlet,
which takes two required parameters. The first parameter, filePath, is the path and file-
name for the script or file to be digitally signed. The second parameter, certificate, is
the X.509 certificate used to sign the script or file. To obtain the X.509 certificate in a
format the Set-AuthenticodeSignature cmdlet understands, you retrieve the certificate as
an object with the Get-ChildItem cmdlet, as shown in this example:

PS C:\> set-authenticodesignature –filePath signed.ps1 -certificate @(get-
childitem cert:\CurrentUser\My -codeSigningCert)[0] -includeChain "All"

Directory: C:\

SignerCertificate Status Path
----------------- ------ ----
5CBCE258711676061836BC45C1B4ACA6F6C7D09E Valid signed.ps1

PS C:\>

www.microsoft.com/downloads/details.aspx?FamilyID=F9992C94-B129-46BC-B240-414BDFF679A7&displaylang=EN
www.microsoft.com/downloads/details.aspx?FamilyID=F9992C94-B129-46BC-B240-414BDFF679A7&displaylang=EN

To retrieve the certificate you want from your own “user” certificate store, you use the Get-
ChildItem cmdlet with the codeSigningCert SwitchParameter. This SwitchParameter can
be used only with the PowerShell Certificate provider and acts as a filter to force the Get-
ChildItem cmdlet to retrieve only code-signing certificates. Last, to ensure that the entire
certificate chain is included in the digital signature, the includeChain parameter is used.

After the Set-AuthenticodeSignature cmdlet has been executed successfully, the signed
file has a valid digital signature block containing the digital signature. A signature block
in a PowerShell script or configuration file is always the last item in the file and can be
found easily because it’s enclosed between SIG # Begin signature block and SIG # End

signature block, as shown here:

Verifying Digital Signatures 101

4

write-host (“This is a signed script!”) -Foregroundcolor Green

SIG # Begin signature block

MIIIHQYJKoZIhvcNAQcCoIIIDjCCCAoCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB

gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR

AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUOBxWZ+ceVCY8SKcVLl/3iq2F

w0OgggYVMIIGETCCBPmgAwIBAgIKcsuBWwADAAAAIzANBgkqhkiG9w0BAQUFADBE

...

KwYBBAGCNwIBCzEOMAwGCisGAQQBgjcCARUwIwYJKoZIhvcNAQkEMRYEFG+QcdwH

dHiuftHilhdyHCeSl0UgMA0GCSqGSIb3DQEBAQUABIGAZxItZJ+uo1E/cVhOCFex

9hinxULa3s0urQi362qa+NQ7yV3XczQOAPl0/kBIrEcwFN6YyS7PPm0wkCAPnfib

4J3uKxZK+4l9iHTiEVmp1ZO5G+P3KrqUS9ktFs7v9yTgqc8JLznxsRLvMwZpAMBO

R2792YGWH5Jy4AwDYeljQ6Y=

SIG # End signature block

NOTE

This process for digitally signing scripts also applies to PowerShell configuration files.
As discussed in Chapter 3, configuration files, depending on the execution policy
setting, might also need to be signed before they are loaded into a PowerShell
session.

Verifying Digital Signatures
To verify the digital signature of PowerShell scripts and configuration files, you use the
Get-AuthentiCodeSignature cmdlet. It returns a valid status or an invalid status, such as
HashMismatch, indicating a problem with the file.

Valid status:

CHAPTER 4 Code Signing102

PS C:\> get-authenticodesignature signed.ps1

Directory: C:\

SignerCertificate Status Path
----------------- ------ ----
5CBCE258711676061836BC45C1B4ACA6F6C7D09E Valid signed.ps1

PS C:\> .\signed.ps1
This is a signed script!
PS C:\>

Invalid status:

PS C:\> Get-AuthenticodeSignature signed.ps1

Directory: C:\

SignerCertificate Status Path
----------------- ------ ----
5CBCE258711676061836BC45C1B4ACA6F6C7D09E HashMismatch signed.ps1

PS C:\ .\signed.ps1
File C:\signed.ps1 cannot be loaded. The contents of file D:\signed.ps1
may have been tampered because the hash of the file does not match the
hash stored in the digital signature. The script will not execute on the
system. Please see “get-help about_signing” for more details.
At line:1 char:12
+ .\signed.ps1 <<<<
PS C:\>

Based on the error in the preceding example, the script has been modified or tampered
with or is corrupt. If the script has been modified by its owner, it must be signed again
before it can be used. If the script has been tampered with or is corrupt, it should be
discarded because its validity and authenticity can no longer be trusted.

Signed Code Distribution
Distributing signed PowerShell scripts and configuration files requires the user to deter-
mine whether to trust code from a particular publisher. The first step is to validate the

publisher’s identity based on a chain of trust. To establish a chain of trust, the user uses
the publisher’s code-signing certificate associated with the digital signature to verify that
the certificate owner is indeed the publisher. For example, Figure 4.5 shows an unbroken
path (or chain) of valid certificates from the publisher’s certificate to a trusted root certifi-
cate (or trust anchor).

Signed Code Distribution 103

4

FIGURE 4.5 The certificate path

When a well-known trusted public root CA or internally trusted root CA is the trust
anchor for the publisher’s certificate, the user explicitly trusts that the publisher’s identity
claims are true.

For Windows users, if a root CA is considered trusted, that CA’s certificate resides in the
Trusted Root Certification Authorities certificate store (see Figure 4.6).

When a root CA is not a valid trust anchor or the certificate is self-signed, the user needs
to decide whether to trust a publisher’s identity claim. If the user determines the identity
claim to be valid, the root CA’s certificate or the self-signed certificate should be added to
the Trusted Root Certification Authorities certificate store to establish a valid chain of
trust.

After the publisher’s identity has been verified or trusted, the next step is deciding
whether the signed code is safe for execution. If a user has previously decided that code
from a publisher is safe for execution, the code (PowerShell script or configuration file)
runs without further user action.

For Windows users, if a publisher is considered trusted, their code-signing certificate
resides in the Trusted Publishers certificate store (see Figure 4.7).

FIGURE 4.6 Trusted Root Certification Authorities certificate store

CHAPTER 4 Code Signing104

FIGURE 4.7 Trusted Publishers certificate store

If a publisher is not trusted, PowerShell prompts the user to decide whether to run signed
code from that publisher, as shown in this example:

The following list explains the available options:

. [V] Never run—This option places the publisher’s certificate in the user’s Untrusted
Certificates certificate store. After a publisher’s certificate has been determined to be
untrusted, PowerShell never allows code from that publisher to run unless the
certificate is removed from the Untrusted Certificates certificate store or the execu-
tion policy is set to Unrestricted or RemoteSigned.

. [D] Do not run—This option, which is the default, halts execution of the untrusted
code.

. [R] Run once—This option allows one-time execution of the untrusted code.

. [A] Always run—This option places the publisher’s certificate in the user’s Trusted
Publishers certificate store. Also, the root CA’s certificate is placed in the Trusted
Root Certification Authorities certificate store, if it isn’t already there.

Enterprise Code Distribution
You might be wondering how to control what code is considered trusted in your organiza-
tion. Obviously, having users or machines decide what to trust defeats the purpose of
distributing signed code in a managed environment. If your environment is managed,
your PKI deployment should have methods for controlling what’s trusted in an organiza-
tion. If your organization is a Windows environment, the most common method is
through GPO. For example, you can define trusted publishers by using a Certificate Trust
List (CTL) or manage them through the Internet Explorer Maintenance extension.

Public Code Distribution
Determining trust in the public realm is entirely different. When establishing trust
between two private entities, they are able to define what is and isn’t trusted. When
dealing with public entities, you don’t have this level of control. It is up to those public
entities to determine what they do or do not trust.

Signed Code Distribution 105

4

PS C:\> .\signed.ps1

Do you want to run software from this untrusted publisher?
File C:\signed.ps1 is published by CN=companyabc.com, OU=IT,
O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on your
system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"):

Summary
In summary, this chapter, as its name suggested, was an in-depth exploration into code
signing. Based on the information that you have gleaned from this chapter, you should
now have an understanding for just how important code signing is to PowerShell security
and how to use it. If you haven’t come to this realization, then it is again stressed that
code signing be understood and used in conjunction with your script development
activities.

In addition to stressing the use of code signing, you should also now have a better under-
standing for the infrastructure that is required to make code signing a viable method for
trusting code within an organization. Granted, while PKI can be difficult to understand,
one of the main goals of this chapter was to explain PKI from the perspective that was
related to your scripting activities—an approach that was taken in an effort to reduce the
amount of bewilderment, on your part, by relating PKI to something that is applicable to
how it would be used with PowerShell. With this knowledge, you should now be able to
determine, or at least convey, a PKI need and hopefully move a project forward such that
the scripts you developed can be trusted at your organization.

CHAPTER 4 Code Signing106

IN THIS CHAPTER

. Introduction

. Script Development

. Script Design

. Script Security

. Standards for Scripting

CHAPTER 5

PowerShell Scripting
Best Practices

Introduction
Many helpful guides are available for learning what script-
ing practices to follow. Often these guides cover best prac-
tices for a particular language, general scripting concepts,
or even one scripter’s views on what’s considered good
scripting. No matter what type of guide you consult, your
goal should always be to seek improvements in how you
script.

This chapter is intended to provide guidelines based on
experience for scripting best practices that tie into software
development best practices. Scripting is similar to software
development, in that it involves writing and developing
code in a way that makes sense. Furthermore, many aspects
of a software development project apply to scripting
projects. Extending software development guidelines to
scripting best practices can give you a good foundation for
improving your script writing.

Script Development
The following sections offer best practices for script devel-
opment that applies to scripting in general. It is highly
recommended that when you are developing your own
scripts that the practices discussed in these sections be
followed to some extent or another. By doing this, you
should find that your scripts will start to meet stated
project requirements, take less time to develop, and have
fewer issues when deployed into production.

Treat Scripting Projects as Actual Projects
Developing a script can take as much effort as any software development project. For
example, you should make sure to incorporate some prototyping and testing to prevent
the script from having any negative impact on an environment. So whenever you write a
script, check the scope of the effect it might have. If the script is complex, takes more
than a few minutes to complete its tasks, requires more resources than yourself (such as
other people), or carries a high level of risk when its runs, turning the script job into a
project might be appropriate.

Use a Development Life Cycle Model
As with all software development projects, you should choose a development life cycle
model that fits the needs of your scripting project. These models range from the tradi-
tional waterfall model to newer models such as Agile, Extreme Programming (XP), Spiral,
Iterative, and so forth. The choice of a model isn’t as important as having a formal
process for managing your scripting projects, however.

If the models mentioned here seem overly complex for a scripting project, Figure 5.1
shows a simple series of steps developed for scripting projects.

CHAPTER 5 PowerShell Scripting Best Practices108

Analysis

Design

Architecture

Development Testing

Deployment

TrainingCyclical Phases

Cyclical Phases

Return to
Development

Maintenance

FIGURE 5.1 The process map for a scripting project

Although similar to a full development life cycle model, the steps are simply pointers to
tasks that need to be completed for a typical scripting project. You can follow this script-
ing model or develop your own, but the point of this practice is to choose a method for
managing your scripting projects.

Design and Prototype Your Scripts by Using Pseudocode
The idea behind designing and prototyping a script by using pseudocode is that it enables
you to develop a script’s structure and logic before writing any code. Working out the
structure and logic beforehand helps you ensure that your script meets its requirements
and helps you detect possible logic flaws early in the process. Furthermore, pseudocode is
language independent and can be written so that other people, especially those who need
to give input on the script design, can read and understand it easily. The following is an
example of pseudocode:

Script Development 109

5

Param domain

Param resource account CSV file

Bind to domain

Open and read CSV file

For each resource account in CSV file:

-Create a new account in the specified OU.

-Set the password (randomly generated complex 14-character password).

-Log password to admin password archive.

-Set the user account attributes based on CSV file information.

-Mail-enable the account.

-Add the user to the appropriate groups based on CSV file information.

Next

Gather Script Requirements Effectively
As with any project, you need to define the problem your script will be solving to deter-
mine what’s required of it. Sometimes a script just solves a simple automation need, as
such its requirements are easy to determine. When a script needs to solve more complex
business automation needs, however, you might need to learn more about the business
processes being automated to determine its requirements. In either case, identifying the
requirements for a script and having all parties sign off on those requirements is pivotal
to ensuring its success. Overlooking these steps in the development process may mean
that your final script fails to meet its requirements and is then rejected as a solution for
the original business need.

Don’t Develop Scripts in a Production Environment
Most scripts are designed to make changes to a system, so there’s always the chance that
running a script in a production environment could have unwanted or possibly damaging

results. Even if a script makes no changes, it could have an undesirable effect, or you
might not fully understand the impact. Even worse, when you run the script to test its
functionality, you might accidentally run the script outside your designated testing scope
and perhaps affect production systems. Therefore, developing your scripts in a production
environment isn’t a good idea.

Test, Test, Test
Scripts are usually written to perform some type of automation task, such as modifying an
attribute on every user in an Active Directory domain. The automation task might carry
a high or low level of impact, but some form of quality assurance testing should be
conducted on the code before running it in a production environment. Scripts in par-
ticular should be tested thoroughly because of their potential effect on an environment.

Keep Your Scripts Professional
Many scripters tend to view scripting as a quick and easy way to complete tasks and don’t
see the need for professional considerations, such as planning, documentation, and stan-
dards. This mindset is likely a holdover from the days when scripting was considered a
clandestine task reserved for UNIX and Linux coders. Clearly, this view is changing with
Microsoft’s release of PowerShell. CLI use, scripting, and automation are becoming the
foundation for how Windows systems administrators manage their environments. With
this change, scripting, with its flexibility and raw power, will be increasingly viewed as a
solution to business automation needs and, therefore, a task that should be done with
professionalism.

To be professional when creating scripts, you should make sure your work meets a certain
level of quality by developing standards for all your scripts to meet, writing clear and
concise documentation, following best practices in planning and layout, testing thor-
oughly, and so forth. Adhering to professional standards can also ensure that others
accept your work more readily and consider it more valuable.

Script Design
The following sections offer best practices for PowerShell script design. The term “design”
is used lightly here as the goal is to provide insight into design aspects that should and
should not be done when writing a PowerShell script. For example, when writing a script,
you should validate information that is provided to the script. Again, it is highly recom-
mended that the practices reviewed in these sections be applied, in some form, to scripts
that you develop. Following these practices will help make your scripts more readable,
usable, robust, and less buggy.

Put Configuration Information at the Beginning of Script
When setting variables, parameters, and so on that control script configuration, you
should always place them near the beginning of a script to make locating these items easy
for anyone using, reading, or editing the script, as shown in this example:

CHAPTER 5 PowerShell Scripting Best Practices110

Another reason for this practice is to reduce the number of errors introduced when
editing the script configuration. If configuration information is spread throughout a
script, it’s more likely to be misconfigured, declared multiple times, or forgotten.

Use Comments
You can’t assume users will understand the logic you’ve used in a script or be familiar
with the methods you used to perform tasks. Therefore, using comments to assist users in
understanding your script is a good practice. Comments don’t have to be as lengthy as a
novel, but should provide enough information to help users see how the script logic
flows. In addition, if your script includes a complex method, class, or function, adding a
comment to explain what it does is helpful. Another benefit of comments is that the
information makes it easier for you to review or update a script. The following example
shows the use of comments to provide helpful information:

Script Design 111

5

#--------------------

Set Vars

#--------------------

$Owner = “Administrators”

$Targets = import-csv $ImportFile

#--------------------

Script Body

#--------------------

...

#---

Add-DACL

#---

Usage: Grants rights to a folder or file.

$Object: The directory or file path. (“c:\myfolder” or

“c:\myfile.txt”)

$Identity: User or Group name. (“Administrators” or

“mydomain\user1”

$AccessMask: The access rights to use when creating the access rule.

(“FullControl”, “ReadAndExecute, Write”, etc.)

$Type: Allow or deny access. (“Allow” or “Deny”)

Avoid Hard-Coding Configuration Information
Hard-coding configuration information is a common mistake. Instead of asking users to
supply the required information, the configuration information is hard-coded in variables
or randomly scattered throughout the script. Hard-coding requires users to manually edit

scripts to set the configuration information, which increases the risk of mistakes that
result in errors when running the script. Remember that part of your goal as a scripter is
to provide usable scripts; hard-coding information makes using a script in different envi-
ronments difficult. Instead, use parameters or configuration files, as shown in the follow-
ing example, so that users can set configuration information more easily.

CHAPTER 5 PowerShell Scripting Best Practices112

param([string] $ADSISearchPath=$(throw “Please specify the ADSI Path!”))

When Necessary, Use Variables
If configuration information does need to be hard-coded in a script, use variables to repre-
sent the information. Defining configuration information in a variable in one place
instead of several places throughout a script decreases the chance of introducing errors
when the information needs to be changed. Furthermore, having configuration informa-
tion in a single place, particularly at the beginning of a script, helps reduce the time to
reconfigure a script for different environments.

Provide Instructions
Most scripts are written for use by others. In many cases, the user is an administrator
who isn’t comfortable with code and command-line interfaces. This means that your
scripts have to be usable as well as useful. If you don’t include instructions to make sure
even a novice can run the script and understand what it does, you haven’t succeeded as
a scripter.

It’s common to see scripts without any instructions, with incorrect instructions, or with
little explanation of what the script does. For users, these scripts are usually frustrating.
Even worse, they might have no clue what impact a script could have on their environ-
ment, and running it could result in a disaster.

The following example includes instructions that might be included in a readme file on
the script’s purpose and how it works:

===

Script Info

===

Name: AddProxyAddress.ps1

Author: Tyson Kopczynski

Date: 6/02/2006

Description:

Use this script to add secondary proxy addresses to users based on a CSV import

file. When trying to add the additional proxy addresses, this script checks the

following conditions:

Perform Validity Checking on Required Parameters
Failing to perform basic validity checks on required parameters is a common mistake. If
your script requires input from users, neglecting these validity checks could mean that
users enter the wrong input, and the script halts with an error. This oversight might not
be a major issue with small scripts, but, with large, complex scripts, it could seriously
affect their usability.

Say you have written a script that performs a software inventory. In your development
environment consisting of a few machines, you run the script but fail to provide the
correct information for a required parameter. The script runs, and a couple of seconds
later, it fails. You realize that you mistyped a parameter, so you correct your mistake and
rerun the script.

Then the systems administrator runs your script against thousands of machines; it runs
for six hours and then fails. Reviewing the error information, the administrator discovers
the script failed because of a mistyped parameter. At that point, the administrator has
already invested six hours only to encounter an error and might conclude your script isn’t
usable. In other words, you wrote a script that works for your environment but not the
administrator’s environment. To prevent this problem, make sure you perform validity
checking on required parameters, as shown in the following example:

Script Design 113

5

Does the user exist?

Is the user mail-enabled?

Does the proxy address currently exist?

This script will create a log file each time it is run.

CSV file format:

[sAMAccountName],[ProxyAddresses]

tyson,tyson@cco.com;tyson@taosage.net

maiko,maiko@cco.com

bob,bob@cco.com

erica,erica@cco.com

The ProxyAddresses column is ; delimited for more than one proxy address.

param([string] $TemplatePath = $(throw write-host `

“Please specify the source template path of the folder structure to” `

“be copied.” -Foregroundcolor Red), [string] $ImportFile = $(throw `

write-host “Please specify the import CSV filename.” `

-Foregroundcolor Red))

write-host “Checking Template Path” -NoNewLine

Make Scripts and Functions Reusable
If you have spent time developing sophisticated script functionality, you should take the
time to make that functionality reusable. With a common set of scripts or functions, you
can also save time when you need to create new scripts. For example, in one script you
have created logic for parsing data from a comma separated value (CSV) file to create an
HTML table. Instead of copying and modifying that logic for new scripts, you can create a
script or library file that includes this logic so that it can be reused in any script.

Reusability is an important best practice. In PowerShell, the concept of reusability makes
even more sense because scripts and library files can be ported easily by calling reusable
code from a PowerShell console session or loading the script or library file with a dot
sourced statement. The following example shows a series of script files being called from
the PowerShell console as part of the pipeline.

CHAPTER 5 PowerShell Scripting Best Practices114

if (!(test-path $TemplatePath)){

throw write-host `t “$TemplatePath is not a valid directory!” `

-Foregroundcolor Red

}

else {

write-host `t “[OK]” -Foregroundcolor Green

}

write-host “Checking Import File” -NoNewLine

if (!(test-path $ImportFile)){

throw write-host `t “$ImportFile is not a valid file!” -Foregroundcolor Red

}

else {

write-host `t “[OK]” -Foregroundcolor Green

}

PS C:\> .\get-invalidusers.ps1 mydomain.com | .\out-html.ps1 | .\out-ie.ps1

Use Descriptive Names Rather Than Aliases
Using aliases in PowerShell can save time but make your scripts difficult for users to read.
The PowerShell language is designed to be easy to write and read, but your naming stan-
dards and use of aliases have an effect on readability. To ensure readability, follow consis-
tent naming standards and use descriptive names rather than aliases, when possible.

Making your code more readable benefits users trying to understand it and means future
updates and changes will be easier for you, too. If you take the time to follow consistent
naming standards and avoid the overuse of aliases, making modifications to the script
should be a breeze.

Provide Status Information for Script Users
Providing status information in an automation script is essential so that users understand
how the script is progressing during execution and know whether script tasks have been
completed successfully. Status information also lets users know whether any errors have
occurred and can even indicate how much longer until the script has finished running.

You can provide status information to users in the form of console displays, as shown in
Figure 5.2, by using the Write-Host and Write-Progress cmdlets, written to a log file, or
Windows Forms.

Script Design 115

5

FIGURE 5.2 Example of how a script can provide status information

NOTE

Regardless of the method, the idea is to provide enough status information without
overloading users with useless details. If you need different levels of detail when
displaying information to users, you can use the Write-Verbose and Write-Debug
cmdlets, the Verbose and Debug parameters, or custom output.

Use the WhatIf and Confirm Parameters
As discussed in Chapter 2, “PowerShell Basics,” two cmdlet parameters are designed to
help prevent scripters and systems administrators from making unwanted changes. The
WhatIf parameter is designed to return information about changes that would occur if the
cmdlet runs yet doesn’t actually make those changes, as shown in this example:

PS C:\> get-process expl* | stop-process –WhatIf

In this example, the process object returned from the Get-Process cmdlet is
explorer.exe. Normally, if a process object is then piped to the Stop-Process cmdlet, the
received process stops. However, when using the WhatIf parameter with the Stop-Process
cmdlet, the command returns information about the changes that would have happened
instead of carrying out the command. For example, say you entered this command:

WARNING

Do not run the following command as it is only meant as an example of what not to do.

CHAPTER 5 PowerShell Scripting Best Practices116

What if: Performing operation "Stop-Process" on Target "explorer (2172)".

PS C:\> get-process | stop-process

Without the WhatIf parameter, this command would stop your PowerShell console
session as well as your system. Adding the WhatIf parameter gives you information
warning that the command would likely result in a system crash, as shown here:

PS C:\> get-process | stop-process -WhatIf
What if: Performing operation "Stop-Process" on Target "alg (1048)".
What if: Performing operation "Stop-Process" on Target "ati2evxx (1400)".
What if: Performing operation "Stop-Process" on Target "ati2evxx (1696)".
What if: Performing operation "Stop-Process" on Target "atiptaxx (3644)".
What if: Performing operation "Stop-Process" on Target "BTSTAC~1 (2812)".
What if: Performing operation "Stop-Process" on Target "BTTray (3556)".
What if: Performing operation "Stop-Process" on Target "btwdins (1652)".
What if: Performing operation "Stop-Process" on Target "csrss (1116)".
What if: Performing operation "Stop-Process" on Target "ctfmon (1992)".
What if: Performing operation "Stop-Process" on Target "eabservr (3740)".
What if: Performing operation "Stop-Process" on Target "explorer (2172)".
What if: Performing operation "Stop-Process" on Target "googletalk
(1888)".
What if: Performing operation "Stop-Process" on Target
"GoogleToolbarNotifier (2236)".
...

The Confirm parameter prevents unwanted modifications by forcing PowerShell to
prompt users before making any changes, as shown in this example:

As a best practice, you should use the WhatIf and Confirm parameters whenever possible
to identify potentially harmful changes and give users a choice before making these
changes.

NOTE

The WhatIf and Confirm parameters are valid only with cmdlets that make
modifications.

Script Security
Security is often an item that is not considered during the development of software. The
same is true with scripting. Unfortunately, considering for and incorporating security into
your scripts is very good best practice. That is why the next three sections may be the
most important sections within this chapter because they deal with PowerShell script
security best practices.

Digitally Sign PowerShell Scripts and Configuration Files
As emphasized in Chapter 4, “Code Signing,” you should always digitally sign your
PowerShell scripts and configuration files so that users and machines running your scripts
can trust that the code is actually from you and hasn’t been tampered with or corrupted.
Adhering to this practice also means you can keep the PowerShell execution policy on
your machine and others in your organization set to AllSigned.

NOTE

Code signing doesn’t apply just to PowerShell scripts and configuration files. You can
apply the principles of code signing to other items, such as executables, macros,
DLLs, other scripts, device drivers, firmware images, and so forth. Other code can
benefit from the security of digital signatures, and you can further limit the possibility
of untrusted code running in your environment.

Script Security 117

5

PS C:\> get-process expl* | stop-process -confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "explorer (2172)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

Never Set Execution Policies to Unrestricted
Setting your execution policy to Unrestricted is like leaving an open door for malicious
code to run on your systems. Because of this risk, you should set your execution policy to
RemoteSigned at a minimum. This setting still allows you to run scripts and load configu-
ration files created locally on your machine but prevents remote code that hasn’t been
signed and trusted from running. However, the RemoteSigned setting isn’t foolproof and
could allow some remote code to run through PowerShell.

Following these guidelines and becoming proficient in code signing are crucial to guaran-
teeing that your PowerShell environment doesn’t become a target for malicious code.
Setting your execution policy to AllSigned increases security even more because it
requires that all scripts and configuration files be signed by a trusted source before
running or loading them.

Try to Run Scripts with the Minimum Required Rights
IT security practices include following the principle of least privileges, which ensures that
entities such as users, processes, and software are granted only the minimum rights
needed to perform a legitimate action. For example, if a user doesn’t need administrative
rights to run a word processing program, there’s no reason to grant that user administra-
tive rights.

The principle of least privileges also applies to scripting. When you’re developing a script,
make an effort to code in a manner that requires the minimum rights to run the script. In
addition, document the required rights to run your script in case they aren’t apparent to
users. If users don’t know the required rights to run a script, they might try running it
with administrative rights, which increases the possibility of causing unwanted and possi-
bly damaging changes to your environment.

Standards for Scripting
As in software development, your scripting practices should incorporate some form of
standardization. The term “standardization” as used here doesn’t mean a formal standard,
such as one from the International Organization for Standardization (ISO) or Institute of
Electrical and Electronics Engineers (IEEE). Instead, it refers to using consistent methods
for how your scripts are named, organized, and structured; how they function; and how
they handle errors. Standardizing these aspects of your scripts ensures consistency in how
others interact with, troubleshoot, and use your scripts.

Using a consistent naming standard across scripts or even within a single script can
improve a script’s readability. Another standardization practice, using a standard script
layout, benefits those trying to read, troubleshoot, or modify your script. Standardization
can also reduce the time you need to develop new scripts. For example, you can create
standard forms for common tasks such as error handling, log file creation, and output
formatting and reuse that functionality.

CHAPTER 5 PowerShell Scripting Best Practices118

This Book’s Scripting Standards
Subsequent chapters in this book focus on real-world examples for PowerShell scripts. So,
working scripts have been pulled from actual projects developed to meet business require-
ments and are used throughout the remainder of this book. While the full source code for
these scripts is presented in the remaining chapters, the source code has also been
provided on the PowerShell Unleashed Reference Web site which allows you to examine
the scripts in usable format. The URL for this Web site is: www.samspublishing.com/.

In addition, this book’s reference Web site also contains several utilities used with scripts
as well as the original source code. You can download a .zip file, which contains the
Scripts file for each chapter. Each chapter subfolder contains another subfolder for a
script and any related files.

To access the downloadable scripts, go to www.samspublishing.com/title/0672329530.

To address a few potential problems of standardization, some choices were made for how
to present scripts in this books. First, scripts are limited to the PowerShell and VBScript
languages to reduce the complexity of dealing with many different scripting languages.
Second, VBScript scripts reside in a Windows Scripting File (WSF). Third, each PowerShell
and VBScript is structured with a common layout that’s easy to comprehend. Figures 5.3
and 5.4 are examples of the layouts used in this book.

Fourth, a digital code-signing certificate from Thawte was purchased, and all PowerShell
scripts have been signed by the entity companyabc.com. If you have followed best prac-
tices for your execution policy setting, you need to configure companyabc.com as a
trusted publisher to run the PowerShell scripts.

CAUTION

The scripts provided with this book are functioning scripts. They have been tested and
should perform according to their intended purposes. However, this doesn’t mean the
scripts can be used in a production environment. If you plan to run one of these
scripts in a production environment, conducting testing on that script first is strongly
recommended.

Last, PowerShell and VBScript scripts tend to provide the same type of interaction for
input and output, although there are differences occasionally when new concepts are
introduced. Overall, however, methods for providing input and output are clear and
concise through use of the PowerShell console, log files, and Windows Forms.

Standards for Scripting 119

5

www.samspublishing.com/
www.samspublishing.com/title/0672329530

FIGURE 5.3 WSF script layout

CHAPTER 5 PowerShell Scripting Best Practices120

Script Configuration

Body

Subs

Functions

Params

Functions

Script Configuration

Body

FIGURE 5.4 PowerShell script layout

Summary
In this chapter, you were presented with a number of PowerShell scripting best practices.
These practices focused on how you develop, design, and secure your scripts so that your
overall ability as a scripter will improve. The sources for these practices are based both
from software development best practices and real-world scripting experience. They are by
no means all inclusive or set in stone to how they apply to your own scripting practices.

If anything, the real goal of this chapter was to act as a prompt for your own thought
processes around what is considered a good scripting practice. In the end, you may
choose to expand on or add to these practices as long as you consider them when sitting
down to write your next PowerShell script. After all, the PowerShell team went through
all the trouble to produce the perfect shell. That favor should be repaid by trying to
produce a well thought-out, well-designed, and secure script.

Summary 121

5

This page intentionally left blank This page intentionally left blank

PART II

Translating Your Existing
Knowledge into
PowerShell

IN THIS CHAPTER

CHAPTER 6 PowerShell and the File System 125

CHAPTER 7 PowerShell and the Registry 157

CHAPTER 8 PowerShell and WMI 183

CHAPTER 9 PowerShell and Active Directory 205

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. File System Management in
WSH and PowerShell

. Working with Permissions

. From VBScript to PowerShell

CHAPTER 6

PowerShell and the
File System

Introduction
This chapter explains how PowerShell can be used to
manage the Windows file system. To do this, the chapter
explores in-depth examples of managing the file system
using both Windows Script Host (WSH) and PowerShell.
These examples are presented from both perspectives in an
effort to give the reader a path to learn PowerShell based
on existing Windows scripting knowledge. In addition to
the example-based comparisons, this chapter also presents
a working file-management script based on a real-world
situation. The goal, like the rest of the chapters in this
book, is to give the reader a chance to learn how
PowerShell scripting techniques can be applied to meet
real-world automation needs.

File System Management in WSH
and PowerShell
WSH offers several methods for manipulating the Windows
file system. The FileSystemObject (FSO) object model,
Windows Management Instrumentation (WMI), and utili-
ties such as copy, calcs, and xcalcs are just a few exam-
ples. Using this plethora of tools, you can perform tasks
such as copying, creating, and deleting files and folders.
Most scripters use the FSO model to work with file systems.

FSO is part of the WSH object model. The
FileSystemObject object acts as the root object for a hier-
archy of COM objects, methods, and collections for
working with the file system. FSO usually allows scripters

to manipulate the file system as they see fit, but in some instances, it doesn’t provide
enough features, so additional tools and methods are needed for certain tasks.

PowerShell, on the other hand, has a built-in provider, the PowerShell FileSystem
provider, for interfacing with the Windows file system. The abstraction layer this provider
furnishes between PowerShell and the Windows file system gives the file system the
appearance of a hierarchical data store. Therefore, interfacing with the file system is the
same as with any other data store that’s accessible through a PowerShell provider. As
discussed in Chapter 3, “PowerShell: A More In-Depth Look,” the core set of cmdlets for
accessing and manipulating other data stores are also used with the file system. The
following command that you’ve seen previously retrieves a list of the core cmdlets for
manipulating data stores available via PowerShell providers:

CHAPTER 6 PowerShell and the File System126

PS C:\> help about_core_commands

Working with Drives
In WSH, you can use the FSO Drive object to retrieve information about available drives
on a system, as shown in this example:

Dim FSO, objFolder

Set FSO = CreateObject(“Scripting.FileSystemObject”)

Set objDrive = fso.GetDrive(fso.GetDriveName(“C:\”))

WScript.Echo “Total Space: “ & FormatNumber(objDrive.TotalSize / 1024, 0)

In PowerShell, you can access some drive information with the Get-PSDrive and
Get-Item cmdlets. However, as discussed in Chapter 3, PowerShell treats drives differently
than WSH does. So if you want to access the same information available with the FSO
Drive object, you need to use the appropriate .NET class, as shown in this next example,
or WMI:

PS C:\> $CDrive = new-object System.IO.DriveInfo C
PS C:\> $DriveSize = ($CDrive.TotalSize / 1024) / 1000 /1000
PS C:\> $DriveSize = "{0:N0}" -f $DriveSize
PS C:\> write-host "The C Drive is $DriveSize GB."
The C Drive is 69 GB.
PS C:\>

Working with Folders
In WSH, you can access folder information and create, delete, copy, and move folders by
using the FSO Folder object, as in this example:

In PowerShell, you use the core cmdlets to perform the same tasks, as shown in this
example:

File System Management in WSH and PowerShell 127

6

Dim FSO, objFolder

Set FSO = CreateObject("Scripting.FileSystemObject")

Set objFolder = FSO.GetFolder("C:\tools")

WScript.Echo objFolder.DateLastAccessed

PS C:\> get-item C:\tools | select LastAccessTime

LastAccessTime

9/10/2006 10:58:51 PM

PS C:\>

Working with Files
In WSH, you can access file information and create, modify, read, copy, move, and delete
files by using the FSO File object, as shown here:

Dim FSO

Set FSO = CreateObject("Scripting.FileSystemObject")

strExtensionName = FSO.GetExtensionName("C:\tools\World_Domination_Plans_R1.doc")

WScript.Echo strExtensionName

In PowerShell, you use the core cmdlets to access file information and manipulate files, as
in this example:

PS C:\tools> $File = get-item World_Domination_Plans_R1.doc
PS C:\tools> $File.extension
.doc
PS C:\tools>

As you can see from these examples, the methods for working with the Windows file
system are similar in FSO and PowerShell, and the core cmdlets in PowerShell can
perform many of the same tasks as FSO objects.

Working with Permissions
Working with file system permissions in WSH has limitations. For example, there’s no
straightforward method for changing permissions on a file or folder. Scripters must
choose between using an external utility, such as cacls, Xcacls, Xcalcs.vbs, or SubInACL,
or using ADsSecurity.dll or the WMI Win32_LogicalFileSecuritySetting class. Neither
method offers a complete or standard solution for working with file system permissions in
WSH. Usually, a scripting workaround is needed to compensate for a lack of features.

Setting Permissions with SubInACL
Given the limitations of WSH, the SubInACL utility is often used for file system permission
changes. This tool isn’t perfect, but if you script around its shortcomings, it’s usually satis-
factory for making permission changes. In addition, SubInACL supports files, directories,
file shares, and printer shares and can be used on the Registry, system services, and even
the Internet Information Services (IIS) metabase. You can download SubInACL from
www.microsoft.com/downloads/details.aspx?FamilyId=E8BA3E56-D8FE-4A91-93CF-
ED6985E3927B&displaylang=en.

The syntax for SubInACL consists of [/Option] /object_type object_name

[[/Action[=Parameter]..]. Although the syntax seems simple, SubInACL is actually a
complex permissions tool that can handle a variety of situations.

No matter what tool you use, the following permission changes are the ones most
commonly needed:

. Take ownership

. Dump permissions

. Add permissions

. Remove permissions

This list isn’t exhaustive, but it does give you a foundation for developing functions that
are used frequently. Developing reusable functions is a highly recommended best practice.
They can be used in many scripts and reduce the time needed to develop a script. For file
system permission changes, developing reusable functions makes even more sense
because working with the supported interfaces in WSH or existing tools can be time
consuming. Therefore, the functions for SubInACL explained in the next section have
been created for reuse in scripts.

SubInACL Functions
There are four SubInACL functions: SetOwner, DumpPerm, AddPerm, and RemovePerm. Each
function takes arguments and builds a command string for the SubInACL utility. Then
using a WshShell object the SubInACL utility is executed using the constructed command
string. Next, output in the log.temp file from SubInACL is read for errors by using the
ParseTempFile function. Based on the error information derived from log.temp, a success
or failure status is then written to the console, as shown in this example:

CHAPTER 6 PowerShell and the File System128

www.microsoft.com/downloads/details.aspx?FamilyId=E8BA3E56-D8FE-4A91-93CF-ED6985E3927B&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=E8BA3E56-D8FE-4A91-93CF-ED6985E3927B&displaylang=en

Working with Permissions 129

6

Function SetOwner(path, account)

‘Used to set the owner on a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& "/subdirectories """ & path & """ /setowner=""" & account & """"

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" " & account & ":" _

& " [SetOwner Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = 0 Then

StdOut.Write(" " & account & ":" _

& " [SetOwner Failed] on " & path)

Else

StdOut.Write(" " & account & ":" _

& " [SetOwner OK] on " & path)

End If

End If

ErrorCode = vbNullString

End Function

Function DumpPerm(path)

‘ Used to clear permissions from a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& "/subdirectories """ & path & """ /perm"

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" Dropped perm on " & path)

Else

StdOut.Write(" Dropped perm on " & path)

End If

ErrorCode = vbNullString

End Function

CHAPTER 6 PowerShell and the File System130

Function AddPerm(path, account, access)

‘ Used to grant a user’s rights to a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp" _

& " /subdirectories """ & path & """ /grant=""" _

& account & """ =" & access

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = 0 Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

StdOut.Write(" " & account & ": " & access _

& " [AddPerm OK] on " & path)

End If

End If

ErrorCode = vbNullString

End Function

Function RemovePerm(path, account, access)

‘ Used to remove a user’s rights to a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp" _

& " /subdirectories """ & path & """ /revoke=""" _

& account & """ =" & access

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = 0 Then

StdOut.Write(" " & account & ": " & access _

Setting Permissions in PowerShell
With two built-in cmdlets named Get-ACL and Set-ACL, you might think managing file
system permissions is easier in PowerShell. However, the Set-ACL cmdlet requires a secu-
rity descriptor object defined by the System.Security.AccessControl.ObjectSecurity
class. Constructing a security descriptor isn’t difficult, but managing permissions isn’t as
straightfoward to script as you might have hoped. When faced with terms such as security
descriptors and access control rules (ACLs), you might be tempted to stick with more
familiar tools, such as SubInACL. If you sit down and go through the process step by step,
however, it’s not as complex as it seems at first glance. It consists of these basic steps:

1. Get the security descriptor (ACL) for an object by using Get-ACL.

2. Build the ACL with access control entries (ACEs).

3. Add the ACL to the security descriptor.

4. Bind the new security descriptor to the object by using Set-ACL.

The following code is an example of using these steps:

Working with Permissions 131

6

& " [AddPerm Failed] on " & path)

Else

StdOut.Write(" " & account & ": " & access _

& " [AddPerm OK] on " & path)

End IF

End If

ErrorCode = vbNullString

End Function

PS C:\> $SD = get-acl "Helena’s Programs.csv"
PS C:\> $Rule = new-object
System.Security.AccessControl.FileSystemAccessRule("maiko",
"FullControl","Allow")
PS C:\> $SD.AddAccessRule($Rule)
PS C:\> set-acl "Helena’s Programs.csv" $SD
PS C:\>

The hardest step to understand in this example is building the access rule. An access rule
consists of three parameters to define user or group, access right, and access control type.
The first parameter, Identity, is easy to define because you know the user or group to be
added to an access rule. The second parameter, FileSystemRights, is more difficult
because it requires understanding file system rights to define the access. However, you can
use the following command to produce a list of supported rights:

PS C:\>

From this list, you can define a single right, such as Modify, or string rights together into
a list, such as Read, Write, and Delete. The third parameter, AccessControlType, is easy to
define because it can be only Allow or Deny.

PowerShell Functions
As with the SubInACL utility, a set of reusable permission management functions can be
developed for use in your scripts. Examples of such functions are as follows:

CHAPTER 6 PowerShell and the File System132

[enum]::GetNames([System.Security.AccessControl.FileSystemRights])
ListDirectory
ReadData
WriteData
CreateFiles
CreateDirectories
AppendData
ReadExtendedAttributes
WriteExtendedAttributes
Traverse
ExecuteFile
DeleteSubdirectoriesAndFiles
ReadAttributes
WriteAttributes
Write
Delete
ReadPermissions
Read
ReadAndExecute
Modify
ChangePermissions
TakeOwnership
Synchronize
FullControl
PS C:\>

#---
Clear-Inherit
#---
Usage: Used to protect against inherited access rules
and remove all inherited explicitly defined rules.
$Object: The directory or file path. ("c:\myfolder" or
"c:\myfile.txt")

function Clear-Inherit{
param ($Object)

$SD = get-acl $Object
$SD.SetAccessRuleProtection($True, $False)
set-acl $Object $SD
}

Clear-Inherit is probably the wrong name for this function because in addition to
preventing inherited permissions from being applied from the parent object and clearing
inherited permissions from the root object and subobjects, it clears explicitly defined
permissions on subobjects. Therefore, before using the Clear-Inherit function, it’s a good
practice to take ownership of the object or make sure you have explicitly defined rights for
yourself on the root file system object. If you don’t ensure that you have access to file
system objects, you might see "access denied" messages after clearing inherited rights.

The next function, Set-Owner, as its name might imply, is used to set the owner on a file
system object:

Working with Permissions 133

6

#---

Set-Owner

#---

Usage: Used to set the owner on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

function Set-Owner{

param ($Object,

[System.Security.Principal.NTAccount]$Identity)

Get the item that will be changed

$Item = get-item $Object

Set the owner

$SD = $Item.GetAccessControl()

$SD.SetOwner($Identity)

$Item.SetAccessControl($SD)

}

Next, the Clear-SD function is used to clear the security descriptor for a file system object:

#---

Clear-SD

#---

Usage: Used to drop all permissions on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

Although the Clear-SD function isn’t used in the file system management script later in
this chapter, it’s a good illustration of how you can set a security descriptor with Security
Descriptor Definition Language (SDDL). SDDL is used to describe a security descriptor
as a text string. If the Clear-SD function is used, an object’s security descriptor is
cleared and then set to FullControl for the Everyone group by using the string
“D:PAI(A;OICI;FA;;;WD)”.

NOTE

For more information on constructing a security descriptor with the Security Descriptor
String Format, refer to http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/secauthz/security/security_descriptor_string_format.asp.

The next function, Add-ACE, is used to grant rights to a file system object for a user or
group. This function, while very similar to the example at the beginning of this section,
also shows how to control inheritance settings for a new Access Control Entry (ACE) with
System.Security.AccessControl.PropagationFlags and System.Security.

AccessControl.InheritanceFlags enumerations:

CHAPTER 6 PowerShell and the File System134

function Clear-SD{

param ($Object)

Get the security descriptor for the object

$SD = get-acl $Object

Set the SD to Everyone - Full Control

#

Yes, this isn’t a best practice; if you don’t like it, then

set the SD to the current user.

$SD.SetSecurityDescriptorSddlForm("D:PAI(A;OICI;FA;;;WD)")

set-acl $Object $SD

}

#---

Add-ACE

#---

Usage: Grants rights to a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

$AccessMask: The access rights to use when creating the access rule.

("FullControl", "ReadAndExecute, Write", etc.)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/security_descriptor_string_format.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/security_descriptor_string_format.asp

Don’t let the name of these flags confuse you as they control how an ACE is applied to an
object and all objects under that object. In the Add-ACE function, the flags are set so that
an ACE is applied to file system objects as "This folder, subfolders, and files." This means
that the ACE will be applied not only to the object being modified, but it will also be
propagated to all objects under that object. Propagating the ACE as defined in the Add-
ACE function should be sufficient for most file system management tasks. If not, you can
modify the function so that it accepts inheritance settings as an argument.

The last function is the Remove-ACE function. This function is used to remove an ACE
from an ACL:

Working with Permissions 135

6

$Type: Allow or deny access. ("Allow" or "Deny")

function Add-ACE{

param ($Object,

[System.Security.Principal.NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

$InheritanceFlags = `

[System.Security.AccessControl.InheritanceFlags]`

"ContainerInherit, ObjectInherit"

$PropagationFlags = `

[System.Security.AccessControl.PropagationFlags]"None"

Get the security descriptor for the object

$SD = get-acl $Object

Add the AccessRule

$Rule = new-object `

System.Security.AccessControl.FileSystemAccessRule($Identity, `

$AccessMask, $InheritanceFlags, $PropagationFlags, $Type)

$SD.AddAccessRule($Rule)

set-acl $Object $SD

}

#---

Remove-ACE

#---

Usage: Removes rights to a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

From VBScript to PowerShell
In addition to showing practical applications for PowerShell, this book demonstrates how
to convert VBScript scripts to PowerShell scripts. The first example is an account provi-
sioning script for companyabc.com, a fast-growing ISP. When provisioning new user
accounts, companyabc.com creates a Web site folder for each account. The folder struc-
ture is based on a template that’s copied to new users’ Web site folders. In the past,
companyabc.com hired interns or contractors to manually create new Web site folders
and set permissions on the folder structure.

After several errors in permission configuration and accidental folder deletions, IT
management decided that using interns or contractors to create Web folders wasn’t the
best method for new account provisioning. To replace the manual process, the IT manage-
ment staff wanted an automated method for creating a user’s Web folder, copying the
template folder structure to the new Web folder, and setting folder permissions.

The ProvisionWebFolders.wsf Script
ProvisionWebFolder.wsf is a VBScript based Windows Script File (WSF) script developed
to meet companyabc.com’s user-provisioning automation needs. A working copy is in
the Scripts\Chapter 6\ProvisionWebFolders folder and is downloadable at
www.samspublishing.com. This script requires that two parameters be defined.

CHAPTER 6 PowerShell and the File System136

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

$AccessMask: The access rights to use when creating the access rule.

("FullControl", "ReadAndExecute, Write", etc.)

$Type: Allow or deny access. ("Allow" or "Deny")

function Remove-ACE{

param ($Object,

[System.Security.Principal.NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

Get the security descriptor for the object

$SD = get-acl $Object

Remove the AccessRule

$Rule = new-object `

System.Security.AccessControl.FileSystemAccessRule($Identity, `

$AccessMask, $Type)

$SD.RemoveAccessRule($Rule)

set-acl $Object $SD

}

www.samspublishing.com

First, templatepath should have its argument set to is the source path of the template
folder structure copied to new users’ Web folders. Second, importfile should have its
argument set to the name of the CSV import file used to define new users and their Web
folder locations. Here’s the command to run the ProvisionWebFolders.wsf script, with
sample output shown in Figure 6.1:

From VBScript to PowerShell 137

6

cscript ProvisionWebFolders.wsf /templatepath:".\Template" /importfile:"
.\users.csv"

FIGURE 6.1 The ProvisionWebFolder.wsf script being executed

The ProvisionWebFolder.wsf script performs the following sequence of actions:

1. The script verifies the template folder path.

2. Next, the script opens and reads the CSV file’s contents (new users and folder
locations) into an array.

3. For each user in the array, the script uses xcopy to copy the template folder structure
to the new user’s Web folder.

4. The script then uses SubInACL to set permissions on each folder, such as the
following:

. Administrators: Owner

. Administrators: FullControl

. System: FullControl

. NewUser: FullControl

NOTE

Used throughout this script are a set of common console or log file output functions
named Mess, StatStart, and StatDone. When writing scripts for administrators who
aren’t scripters, try to make user interaction consistent throughout to improve scripts’
usability and maintain a professional appearance. The source for these functions are
found at the end of this script.

The first code sample consists of the initial XML elements for a WSF. These elements are
used to define the allowed parameters, the script’s description, examples on the script’s
operation, and the scripting language being used:

CHAPTER 6 PowerShell and the File System138

<?xml version="1.0" ?>

<package>

<job id="ProvisionWebFolders">

<runtime>

<description>

**

This script provisions user Web folders based on a user list.

**

</description>

<named name="templatepath" helpstring="The source template path of the

folder structure to be copied." type="string" required="1" />

<named name="importfile" helpstring="The path\name of the CSV import file."

type="string" required="1" />

<example>

Example:

cscript ProvisionWebFolders.wsf /templatepath:"C:\Template Folders\Folder1"

/importfile:"c:\temp\importfile.csv"

</example>

</runtime>

<script language="VBScript">

<![CDATA[

Next, the script checks to see if arguments have been defined for the required parameters
templatepath and importfile. If the arguments are not present the script returns the
script usage information (defined in the previous code sample) to the console and quits. If
arguments are defined, the script then sets up the script environment by defining the
variables that will be used throughout the rest of the script:

The next code sample is the beginning of the actual automation portion of the script.
First, the script writes the script header to the console, then checks to see if the
templatepath is a valid file system path. If the path is valid the script continues. If the
path is not valid the script quits. Notice how information about the validity of the
templatepath and the status of the script execution is written to the console functions for
the script operator to review using the StatStart and StatDone functions:

From VBScript to PowerShell 139

6

On Error Resume Next

‘===

‘ Check required args

‘===

If WScript.Arguments.Named.Exists("templatepath") = FALSE Then

WScript.Arguments.ShowUsage()

WScript.Quit

End If

If WScript.Arguments.Named.Exists("importfile") = FALSE Then

WScript.Arguments.ShowUsage()

WScript.Quit

End If

‘===

‘ Set up job env

‘===

Const ForReading = 1

ReDim arrTargs(0)

Dim StdOut

Dim FSO, objWS

Dim strTemplatePath, strImportFile

Set StdOut = WScript.StdOut

Set FSO = CreateObject("Scripting.FileSystemObject")

Set objWS = CreateObject("WScript.Shell")

strTemplatePath = WScript.Arguments.Named("templatepath")

strImportFile = WScript.Arguments.Named("importfile")

‘===

‘ Start job

‘===

Mess "##"

Mess "# ProvisionWebFolders #"

The ParseFile function in the following code sample reads each line (but skips the first
line) in the CSV file and adds that line as an item to an existing array. This function is
written such that if there is an error encountered the function Xerror will be called. The
Xerror function will stop execution, write the error to the console, and quit the script:

CHAPTER 6 PowerShell and the File System140

Mess "##"

Mess vbNullString

‘===

Mess vbNullString

‘--------------------

‘ Confirm that TemplatePath exists

‘--------------------

StatStart "Checking Template Path"

If (FSO.FolderExists(strTemplatePath)) Then

StatDone

Else

StdOut.WriteLine(" Critical Error: Template Path doesn’t exist...")

WScript.Quit()

End If

‘--------------------

‘ Check csv Import File

‘--------------------

StatStart "Checking Import File"

ParseFile strImportFile, arrTargs

StatDone

In the following code sample, the script uses the xcopy utility to create a user’s Web folder
and copy the template folder structure to it:

‘--------------------

‘ Provision Web Folders

‘--------------------

Mess vbNullString

Mess "Provision Web Folders:"

For Each Targ In arrTargs

arrTargRecord = split(Targ, ",")

When calling the xcopy utility, the script uses a defined command string (strCommand)
and a WScript.Shell object called objWS. The same results could have been achieved with
an FSO object, but the xcopy utility reduces the lines of code needed to perform the task.

Now that the Web folder has been created for the user, the next task is to set the permis-
sions for that folder. To do this, the script makes use of the SubInACL utility by calling the
DumpPerm, SetOwner, AddPerm functions. Pay particular attention in the next code sample
how the functions are called twice for each instance where an object’s permissions are
modified:

From VBScript to PowerShell 141

6

strUserName = arrTargRecord(0)

strPath = arrTargRecord(1)

StdOut.Write(" " & strPath)

StdOut.Write("\" & strUserName)

strCommand = "xcopy """ & strTemplatePath & """ """ & strPath & "\" _

& strUserName & """ /O /E /I /Y"

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.WriteLine(" [FAILED][Command used: " & strCommand & "]")

Else

StdOut.WriteLine(" [COPIED]")

‘ Set Administrators as owner of folder

SetOwner strPath & "\" & strUserName, "Administrators"

Mess vbNullString

‘ Set Administrators as owner on everything below

SetOwner strPath & "\" & strUserName & "*.*", "Administrators"

Mess vbNullString

‘ Dump permissions on the folder

DumpPerm strPath & "\" & strUserName

Mess vbNullString

‘ Dump permissions on everything below

DumpPerm strPath & "\" & strUserName & "*.*"

Mess vbNullString

The first SubInACL call is to change permissions on the root folder, and the second
SubInACL call is to modify permissions for all subfolders and files under the root folder.
Granted, the second call probably isn’t needed after permissions have been dumped from
the root folder. However, dumping permissions from a folder structure doesn’t always set
inheritance settings correctly, and some subfolders and files may not inherit the root
folder’s permissions. Calling SubInACL for the second time to modify permissions for
subfolders and files under the root folder seems to solve the inheritance problem.

The last code sample consists of the Subs and Functions that are used throughout the
script and the closing XML elements for the script. Further review of the final section of

CHAPTER 6 PowerShell and the File System142

‘ Add Administrators

AddPerm strPath & "\" & strUserName, "Administrators", "F"

Mess vbNullString

‘ Add Administrators on everything below

AddPerm strPath & "\" & strUserName & "*.*", "Administrators", "F"

Mess vbNullString

‘ Add SYSTEM

AddPerm strPath & "\" & strUserName, "SYSTEM", "F"

Mess vbNullString

‘ Add SYSTEM on everything below

AddPerm strPath & "\" & strUserName & "*.*", "SYSTEM", "F"

Mess vbNullString

‘ Add the User

AddPerm strPath & "\" & strUserName, strUserName, "F"

Mess vbNullString

‘ Add the User on everything below

AddPerm strPath & "\" & strUserName & "*.*", strUserName, "F"

Mess vbNullString

End If

Mess vbNullString

ErrorCode = vbNullString

Next

Mess "Done Provisioning Web Folders:"

the script is not needed because these Subs and Functions are either fairly self explana-
tory or have been previously discussed:

From VBScript to PowerShell 143

6

‘===

‘ Subs

‘===

‘--------------------

‘ General Message Sub

‘--------------------

Sub Mess(Message)

‘ Write to console

StdOut.WriteLine(Message)

End Sub

‘--------------------

‘ General Start Message Sub

‘--------------------

Sub StatStart(Message)

‘ Write to console

StdOut.Write(Message)

End Sub

‘--------------------

‘ General Finish Message Sub

‘--------------------

Sub StatDone

‘ Write to console

StdOut.Write(vbTab & vbTab)

StdOut.WriteLine("[OK]")

End Sub

‘--------------------

‘ General Xerror Sub

‘--------------------

Sub Xerror

If Err.Number <> 0 Then

‘ Write to console

StdOut.WriteLine(" Critical Error: " & CStr(Err.Number) _

& " " & Err.Description)

WScript.Quit()

End If

End Sub

CHAPTER 6 PowerShell and the File System144

‘===

‘ Functions

‘===

Function ParseFile(file, arrname)

‘ This function parses a file and gives you back an array

‘ (Skips the first line!!!)

On Error Resume Next

count = -1

‘ Open file for reading

Set objFile = FSO.OpenTextFile(file, ForReading)

objFile.SkipLine ‘note: This will always be the col headers

Xerror

‘ Reads each line in the file and places it into an array

Do While objFile.AtEndOfStream <> True

count = count + 1

If count > UBound(arrname) Then ReDim Preserve arrname(count)

arrname(count) = objFile.Readline

Loop

Xerror

‘ Close the file because you are done with it.

objFile.Close()

Set objFile = Nothing

count = 0

End Function

Function ParseTempFile(path)

‘ Open file for reading

Set objFile = FSO.OpenTextFile(path, ForReading)

tempfileinfo = vbNullString

Do While objFile.AtEndOfStream <> True

tempfileinfo = tempfileinfo & objFile.Readline

Loop

ParseTempFile = tempfileinfo

objFile.Close()

Set objFile = Nothing

End Function

From VBScript to PowerShell 145

6

Function SetOwner(path, account)

‘ Used to set the owner on a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& "/subdirectories """ & path & """ /setowner=""" & account & """"

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" " & account & ":" _

& " [SetOwner Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), "will not be processed")

If Not return = 0 Then

StdOut.Write(" " & account & ":" _

& " [SetOwner Failed] on " & path)

Else

StdOut.Write(" " & account & ":" _

& " [SetOwner OK] on " & path)

End If

End If

ErrorCode = vbNullString

End Function

Function DumpPerm(path)

‘ Used to clear permissions from a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp " _

& "/subdirectories """ & path & """ /perm"

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" Dropped perm on " & path)

Else

StdOut.Write(" Dropped perm on " & path)

End If

ErrorCode = vbNullString

End Function

The ProvisionWebFolders.ps1 Script
ProvisionWebFolders.ps1 is a PowerShell conversion of the ProvisionWebFolder.wsf
script. A working copy is in the Scripts\Chapter 6\ProvisionWebFolders folder and is
downloadable at www.samspublishing.com. You need to provide two parameters to run
this script. First, TemplatePath should have its argument set to the source path of the
template folder structure copied to new users’ Web folders. Second, ImportFile should
have its argument set to the name of the CSV import file used to define new users and
their Web folder locations. Here’s the command to run the ProvisionWebFolders.ps1
script, with sample output shown in Figure 6.2:

CHAPTER 6 PowerShell and the File System146

Function AddPerm(path, account, access)

‘ Used to grant a user’s rights to a folder or subfolders.

On Error Resume Next

strCommand = "subinacl /verbose /output=log.temp" _

& " /subdirectories """ & path & """ /grant=""" _

& account & """ =" & access

ErrorCode = objWS.Run(strCommand, 0, TRUE)

If ErrorCode <> 0 Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

return = inStr(1, ParseTempFile("log.temp"), _

"will not be processed")

If Not return = 0 Then

StdOut.Write(" " & account & ": " & access _

& " [AddPerm Failed] on " & path)

Else

StdOut.Write(" " & account & ": " & access _

& " [AddPerm OK] on " & path)

End If

End If

ErrorCode = vbNullString

End Function

]]>

</script>

</job>

</package>

www.samspublishing.com

FIGURE 6.2 The ProvisionWebFolder.ps1 script being executed

The ProvisionWebFolders.ps1 script performs the following sequence of actions:

1. The script verifies that the template folder path exists.

2. Next, the script verifies that the import folder path exists.

3. The script import the CSV file into the $Targets variable.

4. For each user in $Targets, the script copies the template folder structure to the new
user’s Web folder.

5. Finally, the script sets permissions on each folder, such as the following:

. Administrators: Owner

. Administrators: FullControl

. System: FullControl

. NewUser: FullControl

The first code sample contains the header for the ProvisionWebFolder.ps1 script. In this
header includes information about what the script does, when it was updated, and the
script’s author. Just after the header are the script’s parameters:

From VBScript to PowerShell 147

6

PS D:\Work> .\ProvisionWebFolders.ps1 .\template .\users.csv

Notice how the throw keyword is being used in the param declaration to generate an error
when a parameter does not have a defined argument. This technique is used force a para-
meter to be defined by stopping execution of the script and providing the script operator
with information about the required parameter using the Write-Host cmdlet. When using
the Write-Host cmdlet, you can use the Foregroundcolor parameter as shown in the
previous code sample to control the color of output text. This feature is handy for focus-
ing attention on details of the script status, as shown in Figure 6.3:

CHAPTER 6 PowerShell and the File System148

##

ProvisionWebFolders.ps1

Used to provision new user Web folders.

Created: 9/12/2006

Author: Tyson Kopczynski

##

param([string] $TemplatePath = $(throw write-host `

"Please specify the source template path of the folder structure to" `

"be copied." -Foregroundcolor Red), [string] $ImportFile = $(throw `

write-host "Please specify the import CSV filename." `

-Foregroundcolor Red))

FIGURE 6.3 Green and red console output text being used to convey script status

Next, as seen in the following code sample, the script loads the file system management
functions into its scope. Having reviewed these functions previously in this chapter,
further explanation is not needed:

From VBScript to PowerShell 149

6

##

Functions

##

#---

Clear-Inherit

#---

Usage: Used to protect against inherited access rules

and remove all inherited explicitly defined rules.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

function Clear-Inherit{

param ($Object)

$SD = get-acl $Object

$SD.SetAccessRuleProtection($True, $False)

set-acl $Object $SD

}

#---

Set-Owner

#---

Usage: Used to set the owner on a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

$Identity: User or Group name. ("Administrators" or

"mydomain\user1"

function Set-Owner{

param ($Object,

[System.Security.Principal.NTAccount]$Identity)

Get the item that will be changed

$Item = get-item $Object

Set the owner

$SD = $Item.GetAccessControl()

$SD.SetOwner($Identity)

$Item.SetAccessControl($SD)

}

The next code sample contains the beginning of the script’s automation portion. First the
script checks to see if the string contained in the $TemplatePath variable is a valid folder
path. Then the script checks to see if the string contained in the $ImportFile variable is a
valid file path. To perform these tests, the if...then statements in code sample use of
Test-Path cmdlet. This is a very handy cmdlet that can be used for verifying whether a
folder or file (-pathType container or leaf) is valid. If any of these paths are invalid,
the script execution is halted and information about the invalid paths is returned to
script operator:

CHAPTER 6 PowerShell and the File System150

#---

Add-ACE

#---

Usage: Grants rights to a folder or file.

$Object: The directory or file path. ("c:\myfolder" or

"c:\myfile.txt")

$Identity: User or group name. ("Administrators" or

"mydomain\user1"

$AccessMask: The access rights to use when creating the access rule.

("FullControl", "ReadAndExecute, Write", etc.)

$Type: Allow or deny access. ("Allow" or "Deny")

function Add-ACE{

param ($Object,

[System.Security.Principal.NTAccount]$Identity,

[System.Security.AccessControl.FileSystemRights]$AccessMask,

[System.Security.AccessControl.AccessControlType]$Type)

$InheritanceFlags = `

[System.Security.AccessControl.InheritanceFlags]`

"ContainerInherit, ObjectInherit"

$PropagationFlags = `

[System.Security.AccessControl.PropagationFlags]"None"

Get the security descriptor for the object

$SD = get-acl $Object

Add the AccessRule

$Rule = new-object `

System.Security.AccessControl.FileSystemAccessRule($Identity, `

$AccessMask, $InheritanceFlags, $PropagationFlags, $Type)

$SD.AddAccessRule($Rule)

set-acl $Object $SD

}

In the next code sample, the rest of the variables that are used in the script are defined.
The first variable, $Owner, is used by the script to define the owner for each user’s Web
folder structure, which in this case is the local Administrators group. Then the variable
$Targets is defined using the Import-Csv cmdlet. This cmdlet is used to read values from
the import CSV file ($ImportFile) into the $Targets variable, which is used to provision
new users’ Web folders:

From VBScript to PowerShell 151

6

##

Main

##

write-host "--"

write-host "- ProvisionWebFolders -"

write-host "--"

write-host

write-host "Checking Template Path" -NoNewLine

if (!(test-path $TemplatePath -pathType container)){

throw write-host `t "$TemplatePath is not a valid directory!" `

-Foregroundcolor Red

}

else {

write-host `t "[OK]" -Foregroundcolor Green

}

write-host "Checking Import File" -NoNewLine

if (!(test-path $ImportFile -pathType leaf)){

throw write-host `t "$ImportFile is not a valid file!" -Foregroundcolor Red

}

else {

write-host `t "[OK]" -Foregroundcolor Green

}

#--------------------

Set Vars

#--------------------

$Owner = "Administrators"

$Targets = import-csv $ImportFile

In the following code sample, the script uses the path and username information from
the information contained in the $Target variable to construct the final destination path

Next, the script uses the Set-Owner function to change ownership of user’s Web folder
structure to the local Administrators group:

CHAPTER 6 PowerShell and the File System152

#--------------------

Provision Web Folders

#--------------------

write-host

write-host "Provision Web Folders:"

foreach ($Target in $Targets){

$Path = join-path $Target.DestPath $Target.UserName

$UserName = $Target.UserName

write-host $Path

if (!(test-path $Path)){

copy-item $TemplatePath -Destination $Path -Recurse `

-ErrorVariable Err -ErrorAction SilentlyContinue

if (!$Err){

write-host " Folder " -NoNewLine

write-host "[COPIED]" -Foregroundcolor Green

Used to stop loops

$Err = $False

using the Join-Path cmdlet. Then the script uses the Copy-Item cmdlet to copy the
template folders to the destination path:

.{

trap{write-host "[ERROR] Failed to take ownership!" `

-Foregroundcolor Red;

$Script:Err = $True;

Continue}

Set Owner

write-host " SetOwner for $Owner " -NoNewLine

Set-Owner $Path $Owner

if ($Err -eq $False){

$Items = get-childitem $Path -Recurse

[void]($Items | foreach-object `

You might be wondering why the code for Set-Owner is enclosed in a script block. The
dot (.) call operator preceding the script block tells PowerShell to run the script block
within the current scope. If the call operator isn’t used, PowerShell doesn’t run the script
block. The reason for creating an independent script block to handle the code for Set-
Owner is to ensure that the trap statement is scoped only to this block of code. This tech-
nique for controlling the trap’s scope is used frequently in this book.

From VBScript to PowerShell 153

6

{Set-Owner $_.FullName $Owner})

}

else{

Stop the loop

Continue

}

write-host "[OK]" -Foregroundcolor Green

}

.{

trap{write-host "[ERROR] Failed to add rights!" `

-Foregroundcolor Red;

$Script:Err = $True;

Continue}

Add Administrators

write-host " AddACE for Administrators " -NoNewLine

Add-ACE $Path "Administrators" "FullControl" "Allow"

if ($Err -eq $False){

write-host "[OK]" -Foregroundcolor Green

}

else{

Stop the loop

Continue

}

}

.{

trap{write-host "[ERROR] Failed to clear inherited"`

"permissions!" -Foregroundcolor Red;

$Script:Err = $True;

Continue}

CHAPTER 6 PowerShell and the File System154

Clear inherited permissions

write-host " ClearInherit " -NoNewLine

Clear-Inherit $Path

if ($Err -eq $False){

write-host "[OK]" -Foregroundcolor Green

}

else{

Stop the loop

Continue

}

}

As mentioned previously, the Clear-Inherit function clears inherited permissions from
the root folder, subfolders, and files as well as explicitly defined permissions on all
subfolders and files. If the Administrators group didn’t have explicitly defined rights on
the root folder, the rest of the script wouldn’t run because of a lack of rights.

NOTE

Explicitly defined permissions are permissions that are directly defined for a user on
an object. Implicitly defined permissions are permissions that are either inherited or
defined through membership of a group.

In the last code sample, the SYSTEM and the user are then granted FullControl to the
user’s Web folder and the script notifies the script operator of its completion:

Add SYSTEM

write-host " AddACE for SYSTEM " -NoNewLine

if ((Add-ACE $Path "SYSTEM" "FullControl" "Allow") -eq $True){

write-host "[OK]" -Foregroundcolor Green

}

Add User

write-host " AddACE for $UserName " -NoNewLine

if ((Add-ACE $Path $UserName "FullControl" "Allow") -eq $True){

write-host "[OK]" -Foregroundcolor Green

}

}

Summary
In summary, this chapter has focused on how to manage the Windows File System using
both WSH and PowerShell. While both scripting interfaces provide methods to manage
the file system, PowerShell’s FileSystem provider allows for a more holistic data source-like
approach when it comes to working with the file system. When developing future scripts
or from working with the PowerShell console, you may find that the PowerShell approach
allows greater freedom to access, review, and manipulate the file system.

In addition to helping you understand the differences between WSH and PowerShell
when working with the Windows file system, this chapter also focused on explaining how
to manage file system permissions using both scripting interfaces. You may have the
opinion that trying to manage permissions using either scripting interfaces may seem like
a daunting task. While permission management is seemingly difficult, you should have
also hopefully come to the conclusion that the task is not impossible, as demonstrated in
this chapter. Permission management via an automation script can be a very powerful
tool. For example, you could create very powerful automation scripts that enforce file
system permissions based on a defined policy, audit permissions on a file system for
changes based on a baseline, or search for instances where a user or group have been
granted rights.

Summary 155

6

else {

write-host " Folder " -NoNewLine

write-host "Error:" $Err -Foregroundcolor Red

}

}

else {

write-host " Folder " -NoNewLine

write-host "[EXISTS]" -Foregroundcolor Yellow

}

write-host

}

write-host "Done Provisioning Web Folders:"

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. Registry Management in WSH
and PowerShell

. From VBScript to PowerShell

CHAPTER 7

PowerShell and the
Registry

Introduction
This chapter explains how PowerShell can be used to
manage the Windows Registry. To do this, the chapter
explores in-depth examples of managing the Registry using
both Windows Script Host (WSH) and PowerShell. These
examples are presented from both perspectives in an effort
to give the reader a path to learn PowerShell based on
existing Windows scripting knowledge. In addition, to the
example-based comparisons, this chapter also presents a
series of working Registry management functions that are
based on a real-world situation. The goal is to give the
reader a chance to learn how PowerShell scripting tech-
niques can be applied to meet real-world Registry manage-
ment automation needs.

Registry Management in WSH
and PowerShell
The WSH object model has an object for working with
running applications, launching new applications, creating
shortcuts, creating popups, handling environmental vari-
ables, logging event messages, and even accessing or modi-
fying the local Registry. This object, called WshShell,
contains three methods for accessing and manipulating the
Registry, described in the following list:

. RegDelete deletes a key or one of its values from
the Registry.

. RegRead reads the value of a named value from
the Registry.

. RegWrite creates new keys, adds another named value to an existing key, or changes
the value of an existing named value.

Using the WshShell object and its Registry methods is simple. The WshShell object is a
COM object and, like all COM objects, can be created by using the CreateObject() WSH
method. After a WshShell object is created, you can use its Registry methods as you would
any other method in WSH.

In PowerShell, you work with the Registry a little differently. As discussed in Chapter 3,
“PowerShell: A More In-Depth Look,” PowerShell has a built-in provider, Registry, for
accessing and manipulating the Registry on a local machine. The Registry hives available
in this provider are HKEY_LOCAL_MACHINE (HKLM) and HKEY_CURRENT_USER (HKCU). These
hives are represented in a PowerShell session as two additional PSDrive objects named
HKLM: and HKCU:.

NOTE

The WshShell object has access to not only the HKLM: and HKCU: hives, but also
HKEY_CLASSES_ROOT (HKCR), HKEY_USERS, and HKEY_CURRENT_CONFIG. To access
these additional Registry hives in PowerShell, you use the Set-Location cmdlet to
change the location to the root of the Registry provider.

As you’ll also recall from Chapter 3, accessing data through the Registry provider means
PowerShell treats data in the HKLM: and HKCU: PSDrive objects like other hierarchical data
stores. Therefore, accessing and manipulating data from these PSDrives requires using the
PowerShell core cmdlets, as shown in this example:

CHAPTER 7 PowerShell and the Registry158

PS C:\> set-location hkcu:
PS HKCU:\> get-childitem

Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property
—- — —— ————
2 0 AppEvents {}
2 32 Console {ColorTable00, ColorTable01, ColorTab...
24 1 Control Panel {Opened}
0 2 Environment {TEMP, TMP}
1 6 Identities {Identity Ordinal, Migrated5, Last Us...
4 0 Keyboard Layout {}
3 1 Printers {DeviceOld}
32 1 Software {(default)}
0 0 UNICODE Program Groups {}
2 0 Windows 3.1 Migration Status {}
0 1 SessionInformation {ProgramCount}
0 8 Volatile Environment {LOGONSERVER, HOMESHARE, HOMEPATH, US...

By using the PowerShell core cmdlets, you can manipulate the local Registry as you see
fit, just as you would when using Registry methods of the WshShell object. The syntax
and methodology are slightly different, however. In WSH, you create an object and then
use the object’s methods to perform the Registry task. In PowerShell, you access and
manipulate the Registry as you do with the file system. For example, to read a Registry
value in WSH, you use the RegRead method shown in the following example:

Registry Management in WSH and PowerShell 159

7

PS HKCU:\> get-itemproperty ‘Volatile Environment’

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Volatile
Environment

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
PSChildName : Volatile Environment
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
LOGONSERVER : \\SOL
HOMESHARE : \\taosage.internal\homes\tyson
HOMEPATH : \
USERDNSDOMAIN : TAOSAGE.INTERNAL
CLIENTNAME :
SESSIONNAME : Console
APPDATA : C:\Documents and Settings\tyson\Application Data
HOMEDRIVE : U:

PS HKCU:\>

Dim objWS

Set objWS = CreateObject(“WScript.Shell”)

strKey = “HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\”

WScript.Echo objWS.RegRead(strKey & “ProductName”)

In PowerShell, you use the Get-ItemProperty cmdlet shown in the following example:

PS C:\> $Path = "HKLM:\Software\Microsoft\Windows NT\CurrentVersion"
PS C:\> $Key = get-itemproperty $Path
PS C:\> $Key.ProductName
Microsoft Windows XP
PS C:\>

To create or modify a Registry value in WSH, you use the RegWrite method shown in this
example:

CHAPTER 7 PowerShell and the Registry160

Dim objWS

Set objWS = CreateObject(“WScript.Shell”)

strKey = “HKEY_CURRENT_USER\Software\”

objWS.RegWrite strKey & “PSinfo”, “PowerShell_Was_Here”

WScript.Echo objWS.RegRead(strKey & “PSinfo”)

In PowerShell, you use the Set-ItemProperty cmdlet:

PS C:\> $Path = "HKCU:\Software"
PS C:\> set-itemproperty -path $Path -name "PSinfo" –type
"String" -value "PowerShell_Was_Here"
PS C:\>
PS C:\> $Key = get-itemproperty $Path
PS C:\> $Key.info
PowerShell_Was_Here
PS C:\>

Remember that the Windows Registry has different types of Registry values. You use the
Set-ItemProperty cmdlet to define the Type parameter when creating or modifying
Registry values. As a best practice, you should always define Registry values when using
the Set-ItemProperty cmdlet. Otherwise, the cmdlet defines the Registry value with the
default type, which is String. Other possible types are as follows:

. ExpandString

. Binary

. DWord

. MultiString

. Qword

NOTE

Depending on the Registry value you’re creating or modifying, the data value you set
the named value to needs to be in the correct format. So if the Registry value is type
REG_BINARY, you use a binary value, such as $Bin = 101, 118, 105.

To delete a Registry value in WSH, you use the RegDelete method, as shown here:

From VBScript to PowerShell 161

7

Dim objWS

Set objWS = CreateObject("WScript.Shell")

strKey = "HKEY_CURRENT_USER\Software\"

objWS.RegDelete strKey & "PSinfo"

In PowerShell, you use the Remove-ItemProperty cmdlet:

PS C:\> $Path = "HKCU:\Software"
PS C:\> remove-itemproperty -path $Path -name "PSinfo"
PS C:\>

These examples give you an idea of how to work with the Registry. It’s fairly simple as
long as you understand how to use the core cmdlets and remember that working with the
Registry is much like working with the Window file system.

However, there’s no built-in cmdlet for accessing the Registry on a remote machine. This
omission makes sense because by default, no PowerShell providers are available for access-
ing remote data stores. Until someone writes a provider you can use to manage the
Registry remotely, you have to turn to an existing method, explained in the next section.

From VBScript to PowerShell
This section focuses on a VBScript script for reading and manipulating the Registry and
the script’s conversion to PowerShell. Companyabc.com was in the process of evaluating
the IT department’s efficiency. When reviewing the development of automation scripts,
the evaluation team noticed a pattern of certain tasks being repeated in many scripts.
These tasks included creating user accounts, setting account information, managing
machines remotely, performing maintenance activities, and so forth.

The evaluation team concluded that consolidating repetitive code into a series of reusable
library files would cut the time needed to develop scripts. This simple method creates a
generic function or script for performing an often repeated task, such as generating a
random password. When developing a script that requires this task, you don’t need to
write new code. In WSH and PowerShell, you simply include or dot source the library file
you want in your script or console session.

The script examples in this section contain a series of functions for reading and
modifying the Registry on a local host or remote machine that were developed for
companyabc.com. To use these functions, scripters can simply copy them into a script
or call them from a library file that has been included or dot sourced into the script.

In addition to reducing the time to create scripts, using reusable code stored in a library
file makes your code more standardized and interchangeable. In fact, Jeffrey Snover, the
PowerShell architect, has often recommended following this best practice for scripting.

The LibraryRegistry.vbs Script
LibraryRegistry.vbs is a VBScript file for reading or modifying the Registry on the local
host or a remote machine. A working copy is in the Scripts\Chapter 7\LibraryRegistry
folder and is downloadable at www.samspublishing.com. To use this file in another script,
you must include it in the calling script. The calling script then has access to the func-
tions, routines, constants, and so on defined in the included file.

VBScript has two methods for including a script file in another script file. The first
method works only with VBScript (.vbs) files and uses the VBScript ExecuteGlobal state-
ment. This statement takes a single string value and runs it as a VBScript statement in a
script’s global namespace. Then the script can access the contents of the string value. The
following code shows this process:

CHAPTER 7 PowerShell and the Registry162

‘ Method to include VBScript files

Sub Include(strFileName)

On Error Resume Next

Dim objFSO, objFile, strScript

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists(strFileName) Then

Set objFile = objFSO.OpenTextFile(strFileName)

strScript = objFile.ReadAll

objFile.Close

ExecuteGlobal strScript

End If

Set objFSO = Nothing

Set objFile = Nothing

End Sub

This method has several disadvantages, however. First, you run the risk of overwriting
existing global variables and functions at runtime. Second, there’s no good way to debug
the contents of the string value you supply to ExecuteGlobal. After all, the value is just a
string that happens to run. Third, VBScript doesn’t have a valid include statement, so this
method is actually just a workaround.

www.samspublishing.com

For these reasons, using the ExecuteGlobal statement in a VBScript file isn’t the preferred
method for including files in a script file. The most reliable, robust method for including
external code in a script is using a WSF file because the format supports include state-
ments, as shown in this example:

From VBScript to PowerShell 163

7

<job>

<script src="LibrarySuperFunctions.js" language="JScript" />

<script language="vbscript">

strEvent = "Vaction Time!"

strDate = GetCalendarDate(strEvent)

WScript.Echo strDate

</script>

</job>

As this example shows, a VBScript job in a WSF file can include a JScript file. The reverse
is possible, too; a JScript job can include a VBScript file. You can also include both types
of files in a script or have a single WSF file performing multiple jobs that use different
languages (engines) for each job. The point is that regardless of the method you choose,
after you have included a script file, you can use its functions, constants, routines, and so
on in your script.

Each function in the LibraryRegistry.vbs script uses the WMI StdRegProv class, located
in the WMI root\default namespace. This class contains methods for reading and
manipulating Registry keys and values to perform the following tasks:

. Verify that a user has the specified permissions.

. Create, enumerate, and delete Registry keys.

. Create, enumerate, and delete Registry values.

. Get or update a security descriptor for a Registry key (supported only in Vista or
Longhorn).

The remainder of this section gives code examples to illustrate the functions in
LibraryRegistry.vbs.

The ReadRegValue function:

CHAPTER 7 PowerShell and the Registry164

‘--------------------

‘ ReadRegValue

‘--------------------

Function ReadRegValue(strComputer, strKeyPath, strValueName, strType)

On Error Resume Next

const HKEY_LOCAL_MACHINE = &H80000002

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" _

& strComputer & "\root\default:StdRegProv")

If strType = "BIN" Then

objReg.GetBinaryValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, arrValue

ReadRegValue = arrValue

End If

If strType = "DWORD" Then

objReg.GetDWORDValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

ReadRegValue = strValue

End If

If strType = "EXP" Then

objReg.GetExpandedStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

ReadRegValue = strValue

End If

If strType = "MULTI" Then

objReg.GetMultiStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, arrValue

ReadRegValue = arrValue

End If

If strType = "STR" Then

objReg.GetStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

ReadRegValue = strValue

End If

End Function

The ReadRegValue function retrieves a Registry data value for named values under the
HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

. strComputer—The name or IP address of the computer to retrieve Registry informa-
tion from; “.” can be used to denote the local host

. strKeyPath—The key path where the Registry value is located

. strValueName—The name of the Registry value you’re trying to retrieve data from

. strType—A defined string representing the type of Registry value from which data is
being retrieved, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP
(REG_EXPAND_SZ), MULTI (REG_MULTI_SZ), and STR (REG_SZ)

Based on the strType value, the ReadRegValue function uses the appropriate StdRegProv
method to retrieve the specified value’s data from the Registry. The data returned from
ReadRegValue can be in the form of a string, an integer, or an array. The return value
needs to be handled according to the type of Registry value you’re reading. For example,
if you retrieve data from a REG_BINARY value, the data returned from ReadRegValue is in
an array containing binary values. To read the binary values, you need to step through
the array, as shown here:

From VBScript to PowerShell 165

7

Set StdOut = WScript.StdOut

strServer = "serverxyz.companyabc.com"

binValue = ReadRegValue(strServer, "SOFTWARE\Turtle_Worm", "binValue", "BIN")

StdOut.WriteLine "BIN Value:"

For i = lBound(binValue) to uBound(binValue)

StdOut.WriteLine binValue(i)

Next

The CreateRegKey function:

Function CreateRegKey(strComputer, strKeyPath)

On Error Resume Next

const HKEY_LOCAL_MACHINE = &H80000002

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

objReg.CreateKey HKEY_LOCAL_MACHINE, strKeyPath

End Function

The CreateRegKey function creates a Registry key under the HKEY_LOCAL_MACHINE hive.
This function requires defining the following parameters:

. strComputer—The name or IP address of the computer to create the key on; “.” can
be used to denote the local host

. strKeyPath—The key path for the new Registry key

Here’s an example of using this function:

CHAPTER 7 PowerShell and the Registry166

strServer = "serverxyz.companyabc.com"

CreateRegKey strServer, "SOFTWARE\Turtle_Worm"

Function CreateRegValue(strComputer, strKeyPath,_

strValueName, strvalue, strType)

On Error Resume Next

const HKEY_LOCAL_MACHINE = &H80000002

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

If strType = "BIN" Then

objReg.SetBinaryValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

End If

If strType = "DWORD" Then

objReg.SetDWORDValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

End If

If strType = "EXP" Then

objReg.SetExpandedStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

End If

If strType = "MULTI" Then

objReg.SetMultiStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

End If

The CreateRegValue function:

The CreateRegValue function creates or modifies a Registry value under the
HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

. strComputer—The name or IP address of the computer to create or change a
Registry value on; “.” can be used to denote the local host

. strKeyPath—The key path where the Registry value is located

. strValueName—The name of the Registry value you’re trying to create or change

. strValue—The value to which to set the Registry value

. strType—A defined string representing the type of Registry value being created or
changed, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP (REG_EXPAND_SZ),
MULTI (REG_MULTI_SZ), and STR (REG_SZ)

The value you supply for the strValue parameter depends on the type of Registry value
you’re creating or modifying. If you’re working with a REG_BINARY value, the value
provided to CreateRegValue must be an array containing binary values. For
REG_MULTI_SZ, the value must be an array containing string values. With REG_SZ and
REG_EXPAND_SZ, the values must be in the form of a string. However, with REG_EXPAND_SZ,
the value must include a valid environment variable, or the GetExpandedStringValue
method can’t expand the string when the value is retrieved. Last, when creating or modi-
fying REG_DWORD, the value provided to CreateRegValue must be a valid DWORD value.

Here’s an example of using this function:

From VBScript to PowerShell 167

7

If strType = "STR" Then

objReg.SetStringValue HKEY_LOCAL_MACHINE, strKeyPath,_

strValueName, strValue

End If

End Function

Set StdOut = WScript.StdOut

strServer = "serverxyz.companyabc.com"

Multi = Array("PowerShell", "is", "fun!")

CreateRegValue strServer, "SOFTWARE\Turtle_Worm", "multiValue", Multi,_

"MULTI"

The DeleteRegKey function:

CHAPTER 7 PowerShell and the Registry168

Function DeleteRegKey(strComputer, strKeyPath)

On Error Resume Next

const HKEY_LOCAL_MACHINE = &H80000002

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

objReg.DeleteKey HKEY_LOCAL_MACHINE, strKeyPath

End Function

The DeleteRegKey function deletes a Registry key from the HKEY_LOCAL_MACHINE hive. This
function requires defining the following parameters:

. strComputer—The name or IP address of the computer to delete the key from; “.”
can be used to denote the local host

. strKeyPath—The key path for the Registry key to be deleted

NOTE

Deleting a key deletes all subkeys and their values.

Here’s an example of using this function:

Set StdOut = WScript.StdOut

strServer = "serverxyz.companyabc.com"

DeleteRegKey strServer, "SOFTWARE\Turtle_Worm"

The DeleteRegValue value:

Function DeleteRegValue(strComputer, strKeyPath, strValueName)

On Error Resume Next

const HKEY_LOCAL_MACHINE = &H80000002

The DeleteRegValue function deletes a Registry value from the HKEY_LOCAL_MACHINE hive.
This function requires defining the following parameters:

. strComputer—The name or IP address of the computer to create the key on; “.” can
be used to denote the local host

. strKeyPath—The key path where the Registry value resides

. strValueName—The name of the Registry value being deleted

Here’s an example of using this function:

From VBScript to PowerShell 169

7

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_

strComputer & "\root\default:StdRegProv")

objReg.DeleteValue HKEY_LOCAL_MACHINE, strKeyPath, strValueName

End Function

Set StdOut = WScript.StdOut

strServer = "server1000"

DeleteRegValue strServer, "SOFTWARE\Turtle_Worm", "binValue"

The LibraryRegistry.ps1 Script
LibraryRegistry.ps1 is a PowerShell conversion of the LibraryRegistry.vbs VBScript
file. A working copy is in the Scripts\Chapter 7\LibraryRegistry folder and is down-
loadable at www.samspublishing.com. Before using this library file in a PowerShell
console session, you must dot source it as discussed in Chapter 3. The dot sourcing
format is a period followed by a space and then the filename, as in this example: .
.\myscript.ps1. To dot source LibraryRegistry.ps1 from a PowerShell console session,
use the following command:

. "D:\Scripts\LibraryRegistry.ps1"PS C:\>

However, dot sourcing a script file every time you want to use its set of functions tends to
be more work than it should be. When you dot source a script file, the contents are
loaded into your current PowerShell console session’s global scope. If you close that
session and open a new session, everything that was in the global scope is discarded,
forcing you to dot source the script file every time you start a new session.

To avoid this problem, you can use a PowerShell profile to control the configuration of
your PowerShell console. By using a PowerShell profile, such as Profile.ps1, and dot

www.samspublishing.com

sourcing your script files in a profile file, you have everything you need already loaded in
the global scope every time you start a new console session. Here’s an example of a
Profile.ps1 file:

CHAPTER 7 PowerShell and the Registry170

. "D:\Scripts\LibraryRegistry.ps1"

set-location C:\

cls

Welcome Message

"Welcome to back to more reg fun: " + $ENV:UserName

NOTE

LibraryRegistry.ps1 can also be dot sourced in a script file. Dot sourcing a .ps1
script file as such tells PowerShell to load the script into the calling script’s scope.
Remember that a script’s parent scope can be a PowerShell session or another script.

After a new PowerShell session is loaded with the customized Profile.ps1, the console
prompt looks like this:

Welcome back to more reg fun: script_master_snover
PS C:\>

By retrieving information from the Function PSDrive object, as shown in the following
example, you can determine whether the Registry functions defined in
LibraryRegistry.ps1 have been loaded into the current PowerShell session:

PS C:\> get-childitem Function:

CommandType Name Definition
----------- ---- ----------
Function prompt 'PS ' + $(Get-Location) + $(...
Function TabExpansion ...
Function Clear-Host $spaceType = [System.Managem...
Function more param([string[]]$paths); if...
Function help param([string]$Name,[string[...
Function man param([string]$Name,[string[...
Function mkdir param([string[]]$paths); New...
Function md param([string[]]$paths); New...
Function A: Set-Location A:

Notice in the preceding example there are five different Reg functions that can be used in
the current PowerShell session to read and manipulate subkeys under the HKEY_LOCAL_
MACHINE hive for the local host or remote machines. The remainder of this section gives
you more information about these functions.

From VBScript to PowerShell 171

7

Function B: Set-Location B:
Function C: Set-Location C:

…

Function W: Set-Location W:
Function X: Set-Location X:
Function Y: Set-Location Y:
Function Z: Set-Location Z:
Function Get-RegValue param($Computer, $KeyPath, $...
Function Set-RegKey param($Computer, $KeyPath) $...
Function Set-RegValue param($Computer, $KeyPath, $...
Function Remove-RegKey param($Computer, $KeyPath) $...
Function Remove-RegValue param($Computer, $KeyPath, $...

PS C:\>

The Get-RegValue function:

#---

Get-RegValue

#---

Usage: Used to read an HKLM Registry value

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

$ValueName: The 1 value name. ("CurrentUser")

$Type: The Registry value type. ("BIN", "DWORD",

"EXP", "MULTI", or "STR")

function Get-RegValue{

param ($Computer, $KeyPath, $ValueName, $Type)

$HKEY_LOCAL_MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

The Get-RegValue function retrieves a Registry value for named values under the
HKEY_LOCAL_MACHINE hive. This function requires defining the following parameters:

. $Computer—The name or IP address of the computer to retrieve Registry information
from; “.” can be used to denote the local host

. $KeyPath—The key path where the Registry value is located

. $ValueName—The name of the Registry value you’re trying to retrieve data from

. $Type—A defined string representing the type of Registry value from which data is
being retrieved, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP
(REG_EXPAND_SZ), MULTI (REG_MULTI_SZ), and STR (REG_SZ)

The following example shows how to use this function:

CHAPTER 7 PowerShell and the Registry172

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

if ($Type -eq "BIN"){

return $Reg.GetBinaryValue($HKEY_LOCAL_MACHINE, $KeyPath, `

$ValueName)

}

elseif ($Type -eq "DWORD"){

return $Reg.GetDWORDValue($HKEY_LOCAL_MACHINE, $KeyPath, `

$ValueName)

}

elseif ($Type -eq "EXP"){

return $Reg.GetExpandedStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName)

}

elseif ($Type -eq "MULTI"){

return $Reg.GetMultiStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName)

}

elseif ($Type -eq "STR"){

return $Reg.GetStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName)

}

}

PS C:\> get-regvalue "Arus" "SOFTWARE\Voltron" "BlueLion" "BIN"

The Set-RegKey function:

From VBScript to PowerShell 173

7

#---

Set-RegKey

#---

Usage: Used to create/set an HKLM Registry key

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

function Set-RegKey{

param ($Computer, $KeyPath)

$HKEY_LOCAL_MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

return $Reg.CreateKey($HKEY_LOCAL_MACHINE, $KeyPath)

}

The Set-RegKey function creates a Registry key under the HKEY_LOCAL_MACHINE hive. This
function requires defining the following parameters:

. $Computer—The name or IP address of the computer to create the key on; “.” can
be used to denote the local host

. $KeyPath—The key path for the new Registry key

Here’s an example of using this function:

PS C:\> set-regkey "Arus" "SOFTWARE\Voltron"

The Set-RegValue function:

#---

Set-RegValue

#---

Usage: Used to create/set an HKLM Registry value

CHAPTER 7 PowerShell and the Registry174

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

$ValueName: The Registry value name. ("CurrentUser")

$Value: The Registry value. ("value1", Array, Integer)

$Type: The Registry value type. ("BIN", "DWORD",

"EXP", "MULTI", or "STR")

function Set-RegValue{

param ($Computer, $KeyPath, $ValueName, $Value, $Type)

$HKEY_LOCAL_MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

if ($Type -eq "BIN"){

return $Reg.SetBinaryValue($HKEY_LOCAL_MACHINE, $KeyPath, `

$ValueName, $Value)

}

elseif ($Type -eq "DWORD"){

return $Reg.SetDWORDValue($HKEY_LOCAL_MACHINE, $KeyPath, `

$ValueName, $Value)

}

elseif ($Type -eq "EXP"){

return $Reg.SetExpandedStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName, $Value)

}

elseif ($Type -eq "MULTI"){

return $Reg.SetMultiStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName, $Value)

}

elseif ($Type -eq "STR"){

return $Reg.SetStringValue($HKEY_LOCAL_MACHINE, `

$KeyPath, $ValueName, $Value)

}

}

The Set-RegValue function creates or changes a Registry value under the HKEY_LOCAL_
MACHINE hive. This function requires defining the following parameters:

. $Computer—The name or IP address of the computer on which to create or change a
Registry value; “.” can be used to denote the local host

. $KeyPath—The key path where the Registry value is located

. $ValueName—The name of the Registry value you’re trying to create or change

. $Value—The data to which to set the Registry value

. $Type—A defined string representing the type of Registry value being created or
changed, such as BIN (REG_BINARY), DWORD (REG_DWORD), EXP (REG_EXPAND_SZ),
MULTI (REG_MULTI_SZ), and STR (REG_SZ)

The following example shows how to use this function:

From VBScript to PowerShell 175

7

PS C:\> $Multi = "PowerShell", "is", "fun!"
PS C:\> set-regvalue "Arus" "SOFTWARE\Voltron" "Lion_Statement" $Multi "MULTI"

The Remove-RegKey function:

#---

Remove-RegKey

#---

Usage: Used to delete an HKLM Registry key

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

function Remove-RegKey{

param ($Computer, $KeyPath)

$HKEY_LOCAL_MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

return $Reg.DeleteKey($HKEY_LOCAL_MACHINE, $KeyPath)

}

The Remove-RegKey function deletes a Registry key from the HKEY_LOCAL_MACHINE hive.
This function requires defining the following parameters:

. $Computer—The name or IP address of the computer where you’re deleting the key;
“.” can be used to denote the local host

. $KeyPath—The key path for the Registry key to delete

An example of using this function is shown here:

CHAPTER 7 PowerShell and the Registry176

PS C:\> remove-regkey "Arus" "SOFTWARE\Voltron"

The Remove-RegValue function:

#---

Remove-RegValue

#---

Usage: Used to delete an HKLM Registry value

on a local or remote machine.

$Computer: The name of the computer.

$KeyPath: The Registry key path.

("SYSTEM\CurrentControlSet\Control")

$ValueName: The Registry value name. ("CurrentUser")

function Remove-RegValue{

param ($Computer, $KeyPath, $ValueName)

$HKEY_LOCAL_MACHINE = 2147483650

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

$Reg = get-wmiobject -Namespace Root\Default -computerName `

$Computer -List | where-object `

{$_.Name -eq "StdRegProv"}

return $Reg.DeleteValue($HKEY_LOCAL_MACHINE, $KeyPath, $ValueName)

}

The Remove-RegValue function deletes a Registry value from the HKEY_LOCAL_MACHINE
hive. You must define the following parameters:

. $Computer—The name or IP address of the computer where you’re creating the key;
“.” can be used to denote the local host

. $KeyPath—The key path where the Registry value resides

. $ValueName—The name of the Registry value being deleted

Here’s an example of using this function:

From VBScript to PowerShell 177

7

Using the Library
Now that you understand the Registry functions in the LibraryRegistry.ps1 script, you
can practice using these functions. The first step is to create a Registry key called
Turtle_Worm under the HKLM\Software key on an Active Directory domain controller
named DC1. To do this, you use the following command:

PS C:\> remove-regvalue "Arus" "SOFTWARE\Voltron" "Lion_Statement"

PS C:\> set-regkey "DC1" "SOFTWARE\Turtle_Worm"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\>

The command returns a WMI object that contains no information. If any error occurred,
the trap in the function would write the error information to the console, as shown in
this example:

PS C:\> set-regkey "Pinky" "SOFTWARE\Turtle_Worm"
[ERROR] The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
PS C:\>

Next, you create values under the Turtle_Worm Registry key with the following set of
commands:

CHAPTER 7 PowerShell and the Registry178

PS C:\> $Bin = 101, 118, 105, 108, 95, 116, 117, 114, 116, 108, 101
PS C:\> set-regvalue "DC1" "SOFTWARE\Turtle_Worm" "binValue" $Bin
"BIN"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\> $Null = set-regvalue "DC1" "SOFTWARE\Turtle_Worm" "dwordValue"
"1" "DWORD"
PS C:\> $Null = set-regvalue "DC1" "SOFTWARE\Turtle_Worm" "expValue"
"%SystemRoot%\system32\Turtle_Hacker.dll" "EXP"
PS C:\> $Multi = "PowerShell", "is", "fun!"
PS C:\> $Null = set-regvalue "DC1" "SOFTWARE\Turtle_Worm" "multiValue"
$Multi "MULTI"
PS C:\> $Null = set-regvalue "DC1" "SOFTWARE\Turtle_Worm" "strValue"
"Reg work done!" "STR"
PS C:\>

These steps simulate creating a Registry key and its values. Next, you use the Registry
library functions to determine whether a set of values exists. To do this, use the
Get-RegValue function:

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle_Worm" "binValue" "BIN"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :

From VBScript to PowerShell 179

7

ReturnValue : 0
uValue : {101, 118, 105, 108...}

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle_Worm" "dwordValue" "DWORD"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
uValue : 1

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle_Worm" "expValue" "EXP"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
sValue : C:\WINDOWS\system32\Turtle_Hacker.dll

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle_Worm" "multiValue" "MULTI"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :

As you can see from the WMI object returned, if a value exists, its information is returned
as an sValue or uValue property. If the value or key doesn’t exist, the ReturnValue prop-
erty is the integer 2. If the ReturnValue property is set to the integer 0, it indicates that
the WMI method was completed successfully.

Now that you have verified that values under the Turtle_Worm Registry key exist on DC1,
it’s time to delete the Turtle_Worm Registry key and its values. There are two methods to
perform this task. You can delete each value by using the Remove-RegValue function, as
shown in the following example:

CHAPTER 7 PowerShell and the Registry180

__PATH :
ReturnValue : 0
sValue : {PowerShell, is, fun!}

PS C:\> get-regvalue "DC1" "SOFTWARE\Turtle_Worm" "strValue" "STR"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
sValue : Reg work done!

PS C:\>

PS C:\> remove-regvalue "DC1" "SOFTWARE\Turtle_Worm" "binValue"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :

The other method is using the Remove-RegKey function to delete the Turtle_Worm Registry
key, which deletes all its subkeys and their values, as shown here:

Summary 181

7

ReturnValue : 0

PS C:\>

PS C:\> remove-regkey "sol" "SOFTWARE\Turtle_Worm"

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\>

Summary
In closing, this chapter has focused on how to manage the Windows Registry using both
WSH and PowerShell. While both scripting interfaces provide methods to manage the
Registry, PowerShell’s method tends to be more robust because it treats the Registry as a
hierarchical data store. The only shortcoming in the current implementation is that
PowerShell doesn’t have a built-in method for managing the Registry on a remote
machine (which WSH also suffers from). In this case, as reviewed in this chapter,
PowerShell in conjunction with WMI can be used to remotely manage the Registry on a
machine. Using both WMI and PowerShell, you should be able to accomplish any future
Registry automation tasks that are required of you.

How to use reusable code and library files were also introduced in this chapter. As
explained in Chapter 5, “PowerShell Scripting Best Practices,” reusing code is a very
important practice that can reduce the amount of time it takes to develop a script. This
chapter further expanded the concept of reusable code by showing you how to imple-
ment it in the form of a library file based on a real-world example.

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. Comparing WMI Usage
between WSH and PowerShell

. From VBScript to PowerShell

CHAPTER 8

PowerShell and WMI

Introduction
This chapter shows how to use PowerShell to manage
systems with Windows Management Instrumentation
(WMI) and compares the methods Windows Script Host
(WSH) and PowerShell use for WMI tasks. You also examine
some scripting examples that use WSH to perform WMI
tasks and then see how PowerShell can be used for those
tasks. Finally, you look at an example of converting a
VBScript script to PowerShell to perform an automation
task by using WMI. The goal is to give the reader a chance
to learn how PowerShell scripting techniques can be
applied to complete real-world automation needs.

Comparing WMI Usage Between
WSH and PowerShell
To use WMI via scripting, you use a set of objects in the
Scripting API for WMI with the WSH methods
CreateObject() and GetObject() (or another scripting
language’s methods for creating or connecting to COM
objects). In this way, you can connect to a WMI object that
might be a WMI class or an instance of a WMI class.

There are two methods to connect to a WMI object. The
first is creating a SWbemServices object with the corre-
sponding CreateObject() method and then connect to a
WMI object by specifying that object’s path. For the
purpose of this discussion, however, you should focus on
the second method. This method uses a “winmgmts:”
moniker string (a standard COM mechanism for encapsu-
lating the location and binding of another COM object).
These methods are similar, but the SWbemServices object

method is often chosen for error handling and authentication reasons, and the moniker
string is usually chosen for convenience because a connection can be made with a single
statement.

Using WMI in WSH
The following VBScript example uses a moniker string, which connects to a remote
machine and then returns the amount of installed RAM:

CHAPTER 8 PowerShell and WMI184

On Error Resume Next

Dim objWMIService, objComputer, colItems

Dim strComputerName

strComputerName = “Jupiter”

Set objWMIService = GetObject(“winmgmts:\\” & strComputerName _

& “\root\cimv2”)

Set colItems = objWMIService.ExecQuery _

(“Select * from Win32_ComputerSystem”)

For Each objItem in colItems

WScript.Echo “Total RAM is: “ _

& FormatNumber((objItem.TotalPhysicalMemory \ 1024) _

\ 1000, 0, 0, 0, -1) & “ MB”

Next

Saving the script as getmemory.vbs and then running it by using cscript produces the
following results:

C:\>cscript getmemory.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Total RAM is: 774 MB
C:\>

The following sections walk through this script to show you how it gets the installed
memory information from the remote machine Jupiter.

Step One
First, you connect to the WMI service object under the root\cimv2 namespace on Jupiter,
as shown here:

Step Two
Next, you use the ExecQuery() method of the WMI service object with the WMI Query
Language (WQL) to create an object bound to an instance of the Win32_ComputerSytem
class, as shown in this example:

Comparing WMI Usage Between WSH and PowerShell 185

8

Set objWMIService = GetObject(“winmgmts:\\” & strComputerName _

& “\root\cimv2”)

Set colItems = objWMIService.ExecQuery _

(“Select * from Win32_ComputerSystem”)

For Each objItem in colItems

WScript.Echo “Total RAM is: “ _

& FormatNumber((objItem.TotalPhysicalMemory / 1024) _

/ 1000, 0, 0, 0, -1) & “ MB”

Next

Step Three
Finally, using the colItems variable and a for loop, you step through the newly created
object collection and retrieve memory information from the TotalPhysicalMemory prop-
erty. After formatting the numeric value with the FormatNumber function, you write the
amount of memory (in megabytes) installed on the remote machine to the cmd
command prompt, as shown in the following code:

Using WMI in PowerShell
Using WMI in PowerShell has similar conceptual logic as in WSH. The main difference is
that the PowerShell methods are based on WMI .NET instead of the WMI Scripting API.
You have three methods for using WMI in PowerShell: WMI .NET (which is the .NET
System.Management and System.Management.Instrumentation namespaces), the
Get-WmiObject cmdlet, or the PowerShell WMI type accelerators: [WMI], [WMIClass],
and [WMISearcher].

The first method, using the System.Management and System.Management.Instrumentation

namespaces, isn’t discussed in this chapter because it’s not as practical as the other
methods. It should be only a fallback method in case PowerShell isn’t correctly encapsu-
lating an object within a PSObject object when using the other two methods.

The second method, the Get-WmiObject cmdlet, retrieves WMI objects and gathers infor-
mation about WMI classes. This cmdlet is fairly simple. For example, getting an instance of
the local Win32_ComputerSystem class just requires the name of the class, as shown here:

The next example, which is more robust, connects to the remote machine named Jupiter
and gets an instance of the Win32_Service class in which the instance’s name equals
Virtual Server. The result is an object containing information about the Virtual Server
service on Jupiter:

CHAPTER 8 PowerShell and WMI186

PS C:\> get-wmiobject "Win32_ComputerSystem"

Domain : companyabc.com
Manufacturer : Hewlett-Packard
Model : Pavilion dv8000 (ES184AV)
Name : Wii
PrimaryOwnerName : Damon Cortesi
TotalPhysicalMemory : 2145566720

PS C:\>

PS C:\> get-wmiobject -class "Win32_Service" -computerName
"Jupiter" -filter "Name='Virtual Server'"

ExitCode : 0
Name : Virtual Server
ProcessId : 656
StartMode : Auto
State : Running
Status : OK

PS C:\>

PS C:\> get-wmiobject -computerName "Jupiter" -query "Select * From
Win32_Service Where Name='Virtual Server'"

ExitCode : 0
Name : Virtual Server
ProcessId : 656
StartMode : Auto
State : Running
Status : OK

PS C:\>

The following command returns the same information as the previous one but makes use
of a WQL query:

Finally, here’s an example of using Get-WmiObject to gather information about a WMI
class:

Comparing WMI Usage Between WSH and PowerShell 187

8

PS C:\> get-wmiobject -namespace "root/cimv2" -list | where
{$_.Name -eq "Win32_Product"} | format-list *

Name : Win32_Product
__GENUS : 1
__CLASS : Win32_Product
__SUPERCLASS : CIM_Product
__DYNASTY : CIM_Product
__RELPATH : Win32_Product
__PROPERTY_COUNT : 12
__DERIVATION : {CIM_Product}
__SERVER : PLANX
__NAMESPACE : ROOT\cimv2
__PATH : \\PLANX\ROOT\cimv2:Win32_Product

PS C:\>

Although using Get-WmiObject is simple, using it almost always requires typing a long
command string. This drawback brings you to the third method for using WMI in
PowerShell: the WMI type accelerators. The following section explains what a type accel-
erator is and how to use the PowerShell WMI type accelerators.

Type Accelerators
Type accelerators have been used in previous chapters but haven’t been fully explained
yet. A type accelerator is simply an alias for specifying a .NET type. Without a type accel-
erator, defining a variable type requires entering a fully qualified class name, as shown
here:

PS C:\> $User = [System.DirectoryServices.DirectoryEntry]"LDAP://CN=Fujio
Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com"
PS C:\> $User

distinguishedName

{CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com}

PS C:\>

Instead of typing the entire class name, you just use the [ADSI] type accelerator to define
the variable type, as in the following example:

CHAPTER 8 PowerShell and WMI188

PS C:\> $User = [ADSI]"LDAP://CN=Fujio Saitoh,OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com"
PS C:\> $User

distinguishedName

{CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com}

PS C:\>

The PowerShell team has included type accelerators in PowerShell, mainly to cut down on
the amount of typing to define an object type. However, for some reason, type accelera-
tors aren’t covered in the PowerShell documentation, even though the [WMI], [ADSI], and
other common type accelerators are referenced on many Web blogs.

Regardless of the lack of documentation, type accelerators are a fairly useful feature of
PowerShell. Table 8.1 lists commonly used type accelerators.

TABLE 8.1 Type Accelerators in PowerShell

Type Accelerator Name Type

[int] typeof(int)

[int[]] typeof(int[])

[long] typeof(long)

[long[]] typeof(long[])

[string] typeof(string)

[string[]] typeof(string[])

[char] typeof(char)

[char[]] typeof(char[])

[bool] typeof(bool)

[bool[]] typeof(bool[])

[byte] typeof(byte)

[double] typeof(double)

[decimal] typeof(decimal)

[float] typeof(float)

[single] typeof(float)

[regex] typeof(System.Text.RegularExpressions.Regex)

[array] typeof(System.Array)

[xml] typeof(System.Xml.XmlDocument)

[scriptblock] typeof(System.Management.Automation.ScriptBlock)

Type Accelerator Name Type

[switch] typeof(System.Management.Automation.SwitchParameter)

[hashtable] typeof(System.Collections.Hashtable)

[type] typeof(System.Type)

[ref] typeof(System.Management.Automation.PSReference)

[psobject] typeof(System.Management.Automation.PSObject)

[wmi] typeof(System.Management.ManagementObject)

[wmisearcher] typeof(System.Management.ManagementObjectSearcher)

[wmiclass] typeof(System.Management.ManagementClass)

[adsi] typeof(System.DirectoryServices.DirectoryEntry)

How to use the PowerShell WMI type accelerators is explained in the following sections.

[WMI] Type Accelerator

This type accelerator for the ManagementObject class takes a WMI object path as a string
and gets a WMI object bound to an instance of the specified WMI class, as shown in this
example:

Comparing WMI Usage Between WSH and PowerShell 189

8

PS C:\> $CompInfo = [WMI]'\\.\root\cimv2:Win32_ComputerSystem.Name="PLANX”'
PS C:\> $CompInfo

Domain : companyabc.com
Manufacturer : Hewlett-Packard
Model : Pavilion dv8000 (ES184AV)
Name : PLANX
PrimaryOwnerName : Frank Miller
TotalPhysicalMemory : 2145566720

PS C:\>

NOTE

To bind to an instance of a WMI object directly, you must include the key property in
the WMI object path. For the preceding example, the key property is Name.

[WMIClass] Type Accelerator
This type accelerator for the ManagementClass class takes a WMI object path as a string
and gets a WMI object bound to the specified WMI class, as shown in the following
example:

[WMISearcher] Type Accelerator
This type accelerator for the ManagementObjectSearcher class takes a WQL string and
creates a WMI searcher object. After the searcher object is created, you use the Get()
method to get a WMI object bound to an instance of the specified WMI class, as shown
here:

CHAPTER 8 PowerShell and WMI190

PS C:\> $CompClass = [WMICLASS]”\\.\root\cimv2:Win32_ComputerSystem”
PS C:\> $CompClass

Win32_ComputerSystem

PS C:\> $CompClass | format-list *

Name : Win32_ComputerSystem
__GENUS : 1
__CLASS : Win32_ComputerSystem
__SUPERCLASS : CIM_UnitaryComputerSystem
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_ComputerSystem
__PROPERTY_COUNT : 54
__DERIVATION : {CIM_UnitaryComputerSystem, CIM_ComputerSystem,
CIM_System,

CIM_LogicalElement...}
__SERVER : PLANX
__NAMESPACE : ROOT\cimv2
__PATH : \\PLANX\ROOT\cimv2:Win32_ComputerSystem

PS C:\>

PS C:\> $CompInfo = [WMISearcher]”Select * From Win32_ComputerSystem”
PS C:\> $CompInfo.Get()

Domain : companyabc.com
Manufacturer : Hewlett-Packard
Model : Pavilion dv8000 (ES184AV)
Name : PLANX
PrimaryOwnerName : Miro
TotalPhysicalMemory : 2145566720

PS C:\>

From VBScript to PowerShell
This next section explains the conversion of a VBScript script into a PowerShell script.
The sample script is used to monitor virtual machines on a Microsoft Virtual Server
2005 host.

Before this script was developed, companyabc.com was in the process of switching most
of its hardware application servers to virtual machines. As part of this switch, the
company wanted a simple yet effective method for monitoring the virtual machines each
Microsoft Virtual Server hosted. However, an effective monitoring platform, such as
Microsoft Operations Manager (MOM), wasn’t in place. The IT department suggested an
automation script to meet the company’s short-term monitoring needs, so one was devel-
oped that administrators could use to manage Virtual Server systems.

The MonitorMSVS.wsf Script
MonitorMSVS.wsf is a VBScript WSF file developed to meet companyabc.com’s virtual
machine monitoring needs. A working copy is in the Scripts\Chapter 8\MonitorMSVS
folder and is downloadable at www.samspublishing.com. Running this script requires
defining the servername parameter, which should have its argument set to the name of
the Virtual Server system hosting the virtual machines to be monitored. Here’s the
command to run MonitorMSVS.wsf, with an example of the output shown in Figure 8.1:

From VBScript to PowerShell 191

8

D:\Scripts>cscript MonitorMSVS.wsf /servername:vsserver01

FIGURE 8.1 The MonitorMSVS.wsf script being executed

The MonitorMSVS.wsf script performs the following sequence of actions:

1. The script pings the specified Microsoft Virtual Server (MSVS) to verify that the
server is operational.

2. Next, the script connects to the MSVS host by using a moniker string and, therefore,
creating a WMI service object.

www.samspublishing.com

3. Next, the script calls the ExecQuery() method of the WMI service object, passing it
a WQL query requesting a collection of instances of the VirtualMachine class.

4. Finally, for each currently active virtual machine (present in the collection), the
script writes to the cmd command prompt the current values for the Uptime,
CpuUtilization, PhysicalMemoryAllocated, and DiskSpaceUsed properties.

The first code sample consists of the initial XML elements for a WSF. These elements are
used to define the allowed parameters, the script’s description, examples on the script’s
operation, and the scripting language being used:

CHAPTER 8 PowerShell and WMI192

<?xml version=”1.0” ?>

<package>

<job id=”MonitorMSVS”>

<runtime>

<description>

**

This script is used to monitor Microsoft Virtual Server 2005.

**

</description>

<named name=”servername” helpstring=”The name of the MSVS host to monitor.”

type=”string” required=”1” />

<example>

Example:

cscript MonitorMSVS.wsf /servername:”vms01.companyabc.com”

</example>

</runtime>

<script language=”VBScript”>

<![CDATA[

Next, the script checks to see if an argument has been defined for the required parameter
servername. If an argument is not present, the script returns the script usage information
(defined in the previous code snippet) to the console and quits. If an argument is defined,
the script then sets up the script environment by defining the variables that will be used
throughout the rest of the script:

On Error Resume Next

‘===

‘ Check required args

‘===

If WScript.Arguments.Named.Exists("servername”) = FALSE Then

WScript.Arguments.ShowUsage()

The next code snippet is the beginning of the actual automation portion of the script.
First, the script writes the script header to the console, then checks to see if the specified
MSVS host in the servername variable is operational by pinging it using the Ping func-
tion. If the MSVS host is operational, the script continues; otherwise, script execution is
stopped and an appropriate status message is displayed to the script operator:

From VBScript to PowerShell 193

8

WScript.Quit

End If

‘===

‘ Set up job env

‘===

Dim StdOut

Dim strServerName

Set StdOut = WScript.StdOut

strServerName = WScript.Arguments.Named("servername”)

‘===

‘ Start Job

‘===

Mess "##”

Mess "# MonitorMSVS #”

Mess "##”

Mess vbNullString

StatStart "Checking MSVS Status”

If Ping(strServerName) = 0 Then

StdOut.Write(vbTab & vbTab)

StdOut.WriteLine("[OFFLINE]”)

WScript.Quit()

Else

StdOut.Write(vbTab & vbTab)

StdOut.WriteLine("[ONLINE]”)

End If

The next task is to connect to the MSVS host using WMI and retrieve performance infor-
mation about its virtual machines. Once the information has been retrieved, it then needs
to be converted into a readable format before being written to the console, as shown in
the following code snippet:

To make the values returned from the Uptime, CpuUtilization, PhysicalMemoryAllocated,
and DiskSpaceUsed properties more readable, the script uses the FormatNumber function.
This VBScript function controls the formatting of a numeric value and can be used to
specify formatting such as the following:

. How many places to the right of the decimal are displayed

. Whether a leading zero is displayed for fractional values

. Whether to place negative values in parentheses

. Whether numbers are grouped by using the group delimiter specified in Control
Panel

MonitorMSVS.wsf uses the FormatNumber function to format numeric values so that zero
decimal places are shown and values are grouped by using the delimiter specified in a
machine’s regional settings. Last, those values are also converted into units that make
more sense, as in these examples:

CHAPTER 8 PowerShell and WMI194

‘--------------------

‘ Get VM data

‘--------------------

StatStart "Checking VM Data”

Set objWMIService = GetObject("winmgmts:\\” & strServerName _

& "\root\vm\virtualserver”)

Set colItems = objWMIService.ExecQuery("SELECT * FROM VirtualMachine”)

Xerror

StatDone

StdOut.WriteLine(vbNullString)

‘ Header Info

StdOut.WriteLine("[Name] [Uptime] [CPU] [Memory] [Disk]”)

For Each objItem In colItems

StdOut.Write(objItem.Name & vbTab)

StdOut.Write(FormatNumber(objItem.Uptime / 60, 0, 0, 0, -1) & vbTab)

StdOut.Write(FormatNumber(objItem.CpuUtilization, 0) & vbTab)

StdOut.Write(FormatNumber((objItem.PhysicalMemoryAllocated _

/ 1024) / 1000, 0, 0, 0, -1) & vbTab)

StdOut.Write(FormatNumber((objItem.DiskSpaceUsed / 1024) _

/ 1000, 0, 0, 0, -1))

StdOut.WriteLine(vbNullString)

Next

. Uptime is converted from seconds to minutes.

. PhysicalMemoryAllocated is converted from bytes to megabytes.

. DiskSpaceUsed is converted from bytes to megabytes.

The next code snippet consists of all the Subs that are used throughout the script:

From VBScript to PowerShell 195

8

‘===
‘ Subs
‘===
‘--------------------
‘ General Message Sub
‘--------------------
Sub Mess(Message)

‘ Write to console
StdOut.WriteLine(Message)

End Sub

‘--------------------
‘ General Start Message Sub
‘--------------------
Sub StatStart(Message)

‘ Write to console
StdOut.Write(Message)

End Sub

‘--------------------
‘ General Finish Message Sub
‘--------------------
Sub StatDone

‘ Write to console
StdOut.Write(vbTab & vbTab)
StdOut.WriteLine("[OK]”)

End Sub

‘--------------------
‘ General Xerror Sub
‘--------------------
Sub Xerror

If Err.Number <> 0 Then
‘ Write to console
StdOut.WriteLine(" Critical Error: " & CStr(Err.Number) _

& " " & Err.Description)

WScript.Quit()
End If

End Sub

Part of the logic in the MonitorMSVS.wsf script is to verify that the specified MSVS host is
operational before continuing. This check is performed with an ICMP ping, as shown in
the following example:

CHAPTER 8 PowerShell and WMI196

‘===

‘ Functions

‘===

‘--------------------

‘ Ping A Machine

‘--------------------

‘ This function is used to test if a machine is on the network.

Function Ping(Machine)

On Error Resume Next

Set colItems = GetObject("winmgmts:{impersonationLevel=impersonate}”)._

ExecQuery("select * from Win32_PingStatus where address = ‘"_

& Machine & "‘")

For Each colItem in colItems

If IsNull(colItem.StatusCode) or colItem.StatusCode <> 0 Then

Ping = 0

Else

Ping = 1

End If

Next

End Function

To carry out the ICMP ping, the script uses a function aptly named Ping that performs
the following sequence of actions:

1. The Ping function calls the ExecQuery() method of the WMI service object.

2. Ping passes ExecQuery() a WQL query requesting all properties from the instance
of the Win32_PingStatus class, in which the address is that of the host you’re trying
to ping.

3. The resulting collection of instances (in this case, one instance, which is just an
object) is assigned to the colItems variable.

4. The ping’s results are collected from colItems and returned to the script so that it
can determine whether to continue or stop.

Using an ICMP ping reduces the time the script would take to fail if the server requested a
WMI query it wasn’t capable of performing. This advanced error-handling technique can

predict when the script might fail and includes logic to prevent the failure from happen-
ing. Also, a WMI method is used instead of ping.exe because the results returned from
WMI are easier to work with than the text-based results ping.exe returns.

The last code snippet consists of closing XML elements for the script:

From VBScript to PowerShell 197

8

]]>

</script>

</job>

</package>

The MonitorMSVS.ps1 Script
MonitorMSVS.ps1 is a PowerShell conversion of the MonitorMSVS.wsf script. A working
copy is in the Scripts\Chapter 8\MonitorMSVS folder and is downloadable at
www.samspublishing.com. Running this script requires defining the ServerName
parameter, which should have its argument set to the name of the Virtual Server
system hosting the virtual machines to be monitored. Here’s the command to run
MonitorMSVS.ps1, with an example of the output shown in Figure 8.2:

PS D:\Scripts> .\MonitorMSVS.ps1 -ServerName Jupiter

FIGURE 8.2 The MonitorMSVS.ps1 script being executed

NOTE

In the command to run the MonitorMSVS.ps1 script, the ServerName parameter is
named in the command string, whereas in the example from Chapter 6, “Powershell
and the File System,” the script’s parameters aren’t named in the command string. In
PowerShell, you can name or partially name parameters when running a script, as
shown here:

.\MonitorMSVS.ps1 -S Jupiter

www.samspublishing.com

If you define the arguments in an order matching how parameters are defined in
the script, the parameters don’t need to be named at all when running a script, as
shown here:

.\MonitorMSVS.ps1 Jupiter

The MonitorMSVS.ps1 script performs the following sequence of actions:

1. The script pings the specified Microsoft Virtual Server (MSVS) to verify that the
server is operational.

2. Next, the script connects to the Microsoft Virtual Server Administration Web site
and retrieves a list of virtual machines on that MSVS host. The list of virtual
machines is defined as the $Servers variable.

3. The script uses the Get-WmiObject cmdlet to retrieve a collection of instances of the
VirtualMachine class, which is defined as the $VirtualMachines variable.

4. For each virtual machine object in the $Servers variable, the script adds the virtual
machine’s current status as another member of that object. If the virtual machine is
online (present in the $VirtualMachines collection), the script also adds current
values for the Uptime, CpuUtilization, PhysicalMemoryAllocated, and
DiskSpaceUsed properties as members of the virtual machine object.

5. Finally, the script returns the information to the PowerShell console by using the
Format-Table cmdlet.

The first code snippet contains the header for the MonitorMSVS.ps1 script. This header
includes information about what the script does, when it was updated, and the script’s
author. Just after the header is the script’s only parameter ($ServerName):

CHAPTER 8 PowerShell and WMI198

##

MonitorMSVS.ps1

Used to monitor Microsoft Virtual Server 2005.

Created: 12/01/2006

Author: Tyson Kopczynski

##

param([string] $ServerName = $(throw write-host `

"Please specify the name of the MSVS host to monitor!” `

-Foregroundcolor Red))

The next code snippet contains the beginning of the script’s automation portion. First,
the variable $URL is defined as the URL for the MSVS host’s Virtual Server Administration
Website. Then, like the MonitorMSVS.wsf script, MonitorMSVS.ps1 uses an ICMP ping to
verify that the specified MSVS host is operational before continuing. However, the

MonitorMSVS.ps1 script uses the .NET Net.NetworkInformation.Ping class instead of WMI
to conduct the ping. Either method, including ping.exe, could have been used, but
Net.NetworkInformation.Ping requires less work and less code. The choice of a method
doesn’t matter, however, as long as you try to predict where the script will fail and handle
that failure accordingly:

From VBScript to PowerShell 199

8

##

Main

##

$URL = "http://$($ServerName):1024/VirtualServer/VSWebApp.exe?view=1”

#--------------------

Begin Script

#--------------------

write-host "--”

write-host "- MonitorMSVS -”

write-host "--”

write-host

write-host "Checking MSVS Status” -NoNewLine

.{

trap{write-host `t "[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

$Ping = new-object Net.NetworkInformation.Ping

$Result = $Ping.Send($ServerName)

if ($Result.Status -eq "Success”){

write-host `t "[ONLINE]” -Foregroundcolor Green

}

else{

write-host `t "[OFFLINE]” -Foregroundcolor Red

write-host

Break

}
}

If the MSVS host is operational, script writes to the console that the host is “ONLINE”
and continues execution of the script. Conversely, if the MSVS host is not operational,
then the script writes to the console that the host is “OFFLINE” and halts execution of
the script.

Once the operational status of the MSVS host has been verified, the next step is to
connect to host and retrieve a list of virtual machines that are hosted. The following code

snippet completes this task by improving the logic from the original MonitorMSVS.wsf
script and showcasing one of PowerShell’s more impressive capabilities:

CHAPTER 8 PowerShell and WMI200

The MonitorMSVS.wsf script had a major flaw: The WMI query returned information only
about virtual machines that were online at the time of the query. If a virtual machine
happens to be off when the MonitorMSVS.wsf script runs, there’s no way to display that
fact to users. A list of all virtual machines and their current status is helpful information
for a script used as a monitoring tool.

To gain access to this information, the script must create a list of all virtual machines on
the MSVS host. Such a list exists on the Microsoft Virtual Server Administration Web site.
To access it, the script uses the .NET Net.WebClient class to connect to the Microsoft
Virtual Server Administration Web site remotely and download the HTML content from
the Master Status Page.

#--------------------

Get list of VMs

#--------------------

$Webclient = new-object Net.WebClient

$Webclient.UseDefaultCredentials = $True

write-host "Getting VM Names” -NoNewLine

.{

trap{write-host `t "[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

$Data = $Webclient.DownloadString("$URL”)

write-host `t "[DONE]” -Foregroundcolor Green

}

This Regex gets a list of server entries from the data returned

$Servers = [Regex]::Matches($Data, ‘(?<=&vm=)[^”\r\n]*(?=”)’)

There are many duplicates so you need to group them

Plus, this gives you a better name for your property

$Servers = $Servers | group Value | select Name

NOTE

Because PowerShell can use the .NET Framework, it can access Web services as
sources for external data or as applications. For example, you can use PowerShell to
post and read blogs, check the availability of the Wii on bestbuy.com, or perform an
automation task based on data or applications provided by your enterprise’s Web
services. The possibilities are endless.

In the HTML content that is downloaded, the names of each virtual machine are embed-
ded and repeated several times. To build the list, the script uses the regular expression
type accelerator, [Regex], to strip each virtual machine name out of the HTML content
and into the $Servers variable. The resulting list in the $Servers variable then contains
each virtual machine’s name, which is repeated several times. To shorten the list so that
each virtual machine is listed only once, the script uses the Group-Object cmdlet. The
final list, which contains the names of all virtual machines on the specified MSVS host,
is then redefined in the $Servers variable.

Next, the script retrieves the virtual machines’ performance information from instances of
the WMI VirtualMachine class by using the Get-WmiOjbect cmdlet. The next step is to
merge the two resulting data sets: the virtual machine information ($VirtualMachines)
and the list of virtual machines ($Servers). To do this, the script steps through each
virtual machine object in the $Servers variable. If the virtual machine name is in both
object collections, the Add-Member cmdlet is used to extend the virtual machine object in
the $Servers variable so that it includes the performance information in the
$VirtualMachines variable.

This object extension adds an Online status indicator and related property information
from $VirtualMachines. If the virtual machine is offline (not in both collections), the
script only extends the object to include an Offline status indicator. The concept of
changing an object dynamically was introduced in Chapter 3, “Powershell: A More
In-Depth Look,” but this example illustrates the power of this feature used in an automa-
tion script. The following example shows the code for this process:

From VBScript to PowerShell 201

8

#--------------------

Get VM data

#--------------------

write-host "Getting VM Data” -NoNewLine

.{

trap{write-host `t`t "[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

$VSMachines = get-wmiobject -namespace "root/vm/virtualserver” `

-class VirtualMachine -computername $ServerName

The last step is writing information in the $Servers variable to the PowerShell console
with the Format-Table cmdlet. This cmdlet can add calculated properties; in this case, it’s
used to change the labels of properties coming from $Servers. The format operator (-f)
controls the formatting of these properties, as shown in the next code snippet:

NOTE

For more information on the -f operator, refer to the Format method of the .NET
System.String class at http://msdn2.microsoft.com/en-us/library/system.string.
format.aspx.

CHAPTER 8 PowerShell and WMI202

-ErrorAction Stop

write-host `t`t "[DONE]” -Foregroundcolor Green

}

foreach ($Server in $Servers){

&{

$VSMachine = $VSMachines | where {$_.Name -eq $Server.Name}

if($VSMachine){

$Uptime = $VSMachine.Uptime / 60

$Memory = ($VSMachine.PhysicalMemoryAllocated / 1024) / 1000

$Disk = ($VSMachine.DiskSpaceUsed / 1024) /1000

add-member -inputObject $Server -membertype noteProperty `

-name "Status” -value "Online”

add-member -inputObject $Server -membertype noteProperty `

-name "Uptime” -value $Uptime

add-member -inputObject $Server -membertype noteProperty `

-name "CPU” -value $VSMachine.CpuUtilization

add-member -inputObject $Server -membertype noteProperty `

-name "Memory” -value $Memory

add-member -inputObject $Server -membertype noteProperty `

-name "Disk” -value $Disk

}

else{

add-member -inputObject $Server -membertype noteProperty `

-name "Status” -value "Offline”

}

}

}

http://msdn2.microsoft.com/en-us/library/system.string.format.aspx
http://msdn2.microsoft.com/en-us/library/system.string.format.aspx

Summary
In summary, this chapter has focused on how to utilize WMI in conjunction with WSH
and PowerShell to complete automation tasks. The examples and scripts shown in this
chapter are by no means inclusive to what automation tasks can be completed using
WMI. Furthermore, this chapter has shown you just how easy using WMI with PowerShell
is. Armed with this knowledge, the limits to what you can accomplish using the two of
these technologies should be fairly unbounded.

During the review of the real-world automation scripts, this chapter also unveiled a very
powerful PowerShell feature. As discussed, a side effect of PowerShell’s relationship with
the .NET Framework is the ability to interact with and retrieve data from Web-based
services. The resulting feature was used in the MonitorMSVS.ps1 script to gain access to
Microsoft Virtual Server information that previously using VBScript would be more diffi-
cult to access and process. It really can’t be stressed enough that the example shown in
this chapter only scratched the surface in what can be done using this feature.

Summary 203

8

$Servers | format-table Name, Status `

,@{label=”Uptime Mins”; expression={"{0:N0}” -f $_.Uptime}} `

,@{label=”CPU %”; expression={$_.CPU}} `

,@{label=”Memory MB”; expression={"{0:N0}” -f $_.Memory}} `

,@{label=”Disk MB”; expression={"{0:N0}” -f $_.Disk}} `

-wrap

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. Comparing ADSI Usage
Between WSH and PowerShell

. From VBScript to PowerShell

CHAPTER 9

PowerShell and
Active Directory

Introduction
This chapter explains Active Directory Services Interfaces
(ADSI) and describes the approaches Windows Script Host
(WSH) and PowerShell take for Active Directory manage-
ment tasks. To understand these concepts, you review some
examples that compare using WSH and PowerShell for
Active Directory management tasks. Finally, you see a
VBScript-to-PowerShell example that uses ADSI to perform
an Active Directory automation task. The goal is to give
the reader a chance to learn how PowerShell scripting
techniques can be applied to complete real-world automa-
tion needs.

Comparing ADSI Usage Between
WSH and PowerShell
Before learning how to use PowerShell to manage Active
Directory, you need to know that ADSI is the primary
programming interface for managing Active Directory. Any
Active Directory management tool typically uses ADSI to
interact with Active Directory. Similarly, when managing
Active Directory through a script, you usually use ADSI.

To use ADSI as a component in your scripts, you need to
understand several key concepts. First, ADSI consists of a
series of providers: Lightweight Directory Access Protocol
(LDAP), Novell Directory Services (NDS), Novell NetWare
3.x (NWCOMPAT), and Windows NT (WinNT). These
providers allow external programs and scripts to manage a
variety of network-based directories and data repositories,

such as Active Directory, Novell NetWare 4.x NDS, and NetWare 3.x Bindery, and any
LDAP-compliant directory service infrastructure (LDAP V2 and up). However, additional
ADSI providers can be developed to support other types of data repositories. For example,
Microsoft has an Internet Information Services (IIS) ADSI provider for managing IIS.

Second, an ADSI provider implements a group of COM objects to manage network direc-
tories and data repositories. For example, an administrator can use the ADSI WinNT
provider to bind to and manage Windows domain resources because it includes objects
for users, computers, groups, and domains, among others. Objects made available by an
ADSI provider typically reside in the target resource you want to manage. By accessing the
applicable ADSI provider, a program or script can bind to an object and manage it with a
set of methods and properties defined for that object.

Third, ADSI provides an abstraction layer so that you can manage objects across different
directory services and data repositories. This abstraction layer, called the IADs interface,
defines a set of properties and methods as the foundation for all ADSI objects. For
example, an ADSI object accessed through the IADs interface has the following features:

. An object can be identified by name, class, or ADsPath.

. An object’s container can manage that object’s creation and deletion.

. An object’s schema definition can be retrieved.

. An object’s attributes can be loaded into the ADSI property cache and changes to
those attributes can be committed to the original data source.

. Object attributes loaded into the ADSI property cache can be modified.

Fourth, ADSI provides an additional interface (IADsContainer) for objects that are consid-
ered containers (such as organizational units, or OUs). When bound to a container object,
this interface provides a set of common methods for creating, deleting, moving, enumer-
ating, and managing child objects.

Fifth, ADSI maintains a client-side property cache for each ADSI object you bind to or
create. Maintaining this local cache of object information improves the performance of
reading from and writing to a data source because a program or script needs to access the
data source less often. What’s important to understand about the property cache is that
object information it contains must be committed to the original data source. If new
objects or object changes aren’t committed to the original data source, those changes will
not be reflected.

Now that you have a better understanding of using ADSI to interact with objects in Active
Directory, you can compare ADSI use in WSH and PowerShell in the following sections.

CHAPTER 9 PowerShell and Active Directory206

Using ADSI in WSH
WSH has two methods for using ADSI. The first one is using a method (such as WSH’s
GetObject()) or function (such as VBScript’s GetObject()) to connect (bind to) an Active
Directory object. In doing so, you use ADSI’s LDAP or WinNT provider while specifying
the object’s ADSI path, as shown in these two examples:

Comparing ADSI Usage Between WSH and PowerShell 207

9

Set objUser = GetObject(“LDAP://CN=Garett Kopczynski,OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com”)

Set objUser = GetObject(“WinNT://companyabc.com/garett”)

The other WSH method for interacting with ADSI is ActiveX Data Objects (ADO). ADO
allows applications or scripts to access data from different data sources by using a series of
underlying Object Linking and Embedding Database (OLE DB) providers. One of these
providers is an ADSI OLE DB (ADODB) provider that enables you to use ADO and its
support for Structured Query Language (SQL) or LDAP to perform rapid searches in Active
Directory. In the following example, you find a user account in Active Directory by
using LDAP:

Set objConnection = CreateObject(“ADODB.Connection”)

Set objCommand = CreateObject(“ADODB.Command”)

objConnection.Provider = “ADsDSOObject”

objConnection.Open(“Active Directory Provider”)

objCommand.ActiveConnection = objConnection

objCommand.Properties(“Page Size”) = 1000

objCommand.CommandText = _

“<LDAP://companyabc.com>;(&(objectCategory=user)” _

& “(sAMAccountName=tyson));sAMAccountName,distinguishedName;subtree”

Set objRecordSet = objCommand.Execute

If the user exists, the resulting ADO recordset consists of the user’s sAMAccountName and
distinguishedName. This example shows just the tip of the iceberg, however. By using
SQL or LDAP, you can build more powerful searches to retrieve complex filtered sets of
information about Active Directory objects. Using ADO can make your Active Directory
scripts more powerful. However, all this power has a catch. The ADSI OLE DB provider
allows just read-only access to Active Directory, so to interact with objects, you still need
to use ADSI.

Using ADSI with PowerShell
PowerShell also has two methods for working with Active Directory. The first (and easiest)
method is using the built-in [ADSI] type accelerator. It’s similar to the [WMI] type acceler-
ator, in that you specify the object path to which you’re connecting. The difference is
that an object path must be in the form of an ADSI path, as shown in this example:

CHAPTER 9 PowerShell and Active Directory208

PS C:\> $User = [ADSI]"LDAP://CN=Garett
Kopczynski,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com"

This example uses an LDAP ADSI path. However, other providers as well as the [ADSI]
type accelerator are available to ADSI. As discussed in Chapter 8, “PowerShell and
WMI,” PowerShell’s [ADSI] type accelerator is a type shortcut for the .NET System.
DirectoryServices.DirectoryEntry class, which can interface with these ADSI providers:
IIS, LDAP, NDS, and WinNT. For example, if you want to access the same user account but
with the ADSI WinNT provider, use the following command:

PS C:\> $User = [ADSI]"WinNT://companyabc.com/garett"

The second method is using the .NET System.DirectoryServices namespace via the
New-Object cmdlet. When using this namespace, you can use two component classes to
manage Active Directory. The first is System.DirectoryServices.DirectoryEntry, the
same class used by the [ADSI] type accelerator. Its use is shown in the following example:

PS C:\> $User = new-object DirectoryServices.DirectoryEntry
("LDAP://CN=Garett Kopczynski,OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com")

The second is the System.DirectoryServices.DirectorySearcher class, which can be
used to perform LDAP searches, as shown here:

PS C:\> $Searcher = new-object DirectoryServices.DirectorySearcher
PS C:\> $Searcher.Filter =
"(&(objectCategory=person)(objectClass=user)(samAccountName=garett))"
PS C:\> $User = $Searcher.FindOne().GetDirectoryEntry()

PowerShell’s methods for using ADSI are similar to the WSH methods. Like WSH,
PowerShell has a direct method involving the System.DirectoryServices.
DirectoryEntry class or the [ADSI] type accelerator to connect to Active Directory objects
and manage them. In addition, like WSH, PowerShell also has a second method involving

the System.DirectoryServices.DirectorySearcher class to perform searches against
Active Directory and retrieve read-only information about objects.

Therefore, managing Active Directory is much the same in PowerShell and WSH. Despite
PowerShell using the .NET Framework to manage Active Directory, the System.
DirectoryServices.DirectoryEntry and the System.DirectoryServices.
DirectorySearcher classes are just .NET interfaces for ADSI. The differences between WSH
and PowerShell are only in the specific functions and methods for managing Active
Directory and their syntax. The next two sections examine these similarities by reviewing
how to retrieve objection information and create an object using VBScript and
PowerShell.

Retrieving Object Information
The following VBScript example binds to the specified user object by using the VBScript
GetObject() method with an ADSI LDAP provider. The script then retrieves the user
object’s Name, userPrincipalName, description, and physicalDeliveryOfficeName attrib-
utes and echoes them back via a message box or to a cmd command prompt, as shown
here:

Comparing ADSI Usage Between WSH and PowerShell 209

9

Set objUser = GetObject(“LDAP://CN=Garett Kopczynski,OU=Accounts,OU=Managed

Objects,DC=companyabc,DC=com”)

WScript.Echo objUser.Name

WScript.Echo objUser.userPrincipalName

WScript.Echo objUser.description

WScript.Echo objUser.physicalDeliveryOfficeName

Saving the script as getuserinfo.vbs and then running it by using cscript produces the
following results:

C:\>cscript getuserinfo.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

CN=Garett Kopczynski
Garett@companyabc.com
Marketing Manager
Dallas

C:\>

To perform the same automation task in PowerShell, you use the [ADSI] type accelerator
to bind to the specified user object. To retrieve the user object’s attributes, you use the
ADSI Get() method, as shown here:

Creating an Object
The following VBScript example binds to the Accounts OU by using the VBScript
GetObject() method with an ADSI LDAP provider. Next, the script uses the ADSI Create()
method to create a user object named David Lightman in the Accounts OU, and then
defines attributes for the new user object with the ADSI Put() method. Finally, the new
user object is written to Active Directory by using the ADSI SetInfo() method, and a
status message about the object creation is displayed via a message box or at a cmd
command prompt, as shown here:

CHAPTER 9 PowerShell and Active Directory210

PS C:\> $User = [ADSI]"LDAP://CN=Garett
Kopczynski,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com"
PS C:\> $User.Get("Name")
Garett Kopczynski
PS C:\>

After binding to the user object, you can access its attributes directly from PowerShell
with any of the object formatting or manipulation cmdlets. For example, to access and
display the same attributes as in the VBScript example, you use the Format-List cmdlet:

PS C:\> $User | format-list Name, userPrincipalName, description,
physicalDeliveryOfficeName

name : {Garett Kopczynski}
userPrincipalName : {Garett@taosage.net}
description : {Marketing Manager}
physicalDeliveryOfficeName : {Dallas}

PS C:\>

Set objOU = GetObject(“LDAP://OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com”)

Set objUser = objOU.Create(“user”, “CN=David Lightman”)

objUser.Put “sAMAccountName”, “dlightman”

objUser.Put “sn”, “Lightman”

objUser.Put “givenName”, “David”

objUser.Put “userPrincipalName”, “dlightman@norad.gov”

objUser.SetInfo

Wscript.Echo “User account “ & objUser.Get(“sAMAccountName”) & “ created.”

Saving the script as createuserinfo.vbs and then running it by using cscript produces
the following results:

Comparing ADSI Usage Between WSH and PowerShell 211

9

C:\>cscript createuserinfo.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

User account dlightman created.
C:\>

To perform the same automation task in PowerShell, you use the [ADSI] type accelerator.
The resulting commands are similar in logic and syntax to the VBScript example. For
example, to create the user object, you bind to the Accounts OU, and then create a new
user object named David Lightman by using the ADSI Create() method. Next, you use
the ADSI Put() method to define the user object’s attributes and the ADSI SetInfo()
method to write the user object to Active Directory. Last, to verify that the account was
created, you bind to the new user object by using the [ADSI] type accelerator. This
process is shown in the following code:

PS C:\> $OU = [ADSI]"LDAP://OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com"
PS C:\> $NewUser = $OU.Create("user", "CN=David Lightman")
PS C:\> $NewUser.Put("sAMAccountName", "dlightman")
PS C:\> $NewUser.Put("sn", "Lightman")
PS C:\> $NewUser.Put("givenName", "David")
PS C:\> $NewUser.Put("userPrincipalName", "dlightman@norad.gov")
PS C:\> $NewUser.SetInfo()
PS C:\> [ADSI]"LDAP://CN=David Lightman,OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com"

distinguishedName

{CN=David Lightman,OU=Accounts,OU=Managed
Objects,DC=companyabc,DC=com}

PS C:\>

NOTE

If you try to use this example in your environment, you’ll notice that the resulting user
objects are disabled initially because the userAccountControl value defaults to 514,
indicating that the account is disabled. To make this example work, you would need to
define addition parameters, such as user password, account status, group member-
ships, and so on.

From VBScript to PowerShell
This section shows a VBScript script converted into a PowerShell script. The script deter-
mines whether a list of users are members of a specific group.

At the time this script was developed, companyabc.com was in the process of migrating
users from the old retail management application to a new one. To streamline the process
and limit interruptions in employee productivity, the migration was carried out in stages.
Part of the process involved producing lists of users to be migrated from the old applica-
tion. Each user on the list was migrated to the new application with a configuration based
on Active Directory group membership.

However, manually verifying each user’s group membership on a migration list was time
consuming, and producing membership reports was daunting, with thousands of users
and groups. companyabc.com needed a way to automate the group verification process so
that migration could continue without interruptions. To meet this need, companyabc.
com requested a script that could take a list of users being migrated and produce a report
indicating group memberships for those users.

The IsGroupMember.wsf Script
IsGroupMember.wsf is a VBScript WSF file that was developed to handle companyabc.
com’s group verification process. A working copy is in the Scripts\Chapter 9\
IsGroupMember folder and is downloadable at www.samspublishing.com. To run this
script, two parameters must be defined. The groupname parameter should have its argu-
ment set to the sAMAccountName of the group that user membership is verified against.
The importfile parameter should have its argument set to the name of the CSV import
file listing users who need to be verified. An optional parameter, exportfile, should have
its argument set to the name of the export file where data by the script is stored.

NOTE

The CSV import file must contain only one column (sAMAccountName). To see an
example, refer to the users.csv file in the Scripts\Chapter 9\IsGroupMember
folder, which is downloadable at www.samspublishing.com.

Here’s the command to run the IsGroupMember.wsf script, with an example of the output
shown in Figure 9.1:

CHAPTER 9 PowerShell and Active Directory212

D:\Scripts>cscript IsGroupMember.wsf /groupname:
"TAO-D-RA-LS-LocalWorkstationPowerUsers"
/importfile:".\users.csv" /exportfile:"export.csv"

www.samspublishing.com
www.samspublishing.com

FIGURE 9.1 The IsGroupMember.wsf script being executed

The IsGroupMember.wsf script performs the following sequence of actions:

1. The script tests the connection to the current domain by retrieving its
DefaultNamingContext, which is used later to query Active Directory. If this con-
nection fails, the script halts.

2. The script creates an ADO connection object, which is used later to search Active
Directory by using the ADSI OLE DB provider.

3. Next, the ParseFile function opens the specified CSV file and parses user informa-
tion into the specified array (arrUsers). If this function fails because the specified
file is invalid, the script halts.

4. The script queries Active Directory for the specified group by using the ADO object.
If the group isn’t valid, the script halts. If the group is valid, however, the script
connects to the group by using ADSI, retrieves the group members, and adds them
to the group Dictionary object (dictGroup).

5. Next, the script steps through users in the arrUsers array, connecting to each user
object by using ADSI and retrieving the user’s distinguishedName. Invalid users are
added to the user Dictionary object (dictUsers) with the value “Doesn’t exist”. If
the user is valid, the script checks whether the user’s distinguishedName exists in
the dictGroup object. Users who are group members are added to the dictUsers
object with the value “Yes”. Users who aren’t group members are added to
dictUsers with the value “No”.

6. Last, the script writes information in the dictUsers object to the cmd command
prompt. If an export filename is specified, the same information is written to the
export file.

From VBScript to PowerShell 213

9

The first code snippet consists of the initial XML elements for a WSF. These elements are
used to define the allowed parameters, the script’s description, examples on the script’s
operation, and the scripting language being used:

CHAPTER 9 PowerShell and Active Directory214

<?xml version=”1.0” ?>

<package>

<job id=”IsGroupMember”>

<runtime>

<description>

**

Used to check if users are members of a specified group.

**

</description>

<named name=”groupname” helpstring=”The name of the group to check.”

type=”string” required=”1” />

<named name=”importfile” helpstring=”The import CSV file path/filename.”

type=”string” required=”1” />

<named name=”exportfile” helpstring=”The export CSV file.” type=”string”

required=”0” />

<example>

Example:

cscript ISGroupMember.wsf /groupname:”mygroup” /importfile:”users.csv”

</example>

</runtime>

<script language=”VBScript”>

<![CDATA[

Next, the script checks to see if arguments have been defined for the required parameters
groupname and importfile. If the arguments are not present, the script returns the script
usage information (defined in the previous code snippet) to the console and quits. If argu-
ments are defined, the script then sets up the script environment by defining the vari-
ables that will be used throughout the rest of the script.

Because VBScript arrays are difficult to store and retrieve data from, this script makes use
of the Windows Scripting Runtime Library’s Dictionary object (dictGroup and dictUsers

in the preceding code). The Dictionary object, unlike normal arrays, allows you to store
data in key/value pairs. With this storage method, you can access data in the array by
specifying the key, use the Dictionary object’s methods and properties on data in the
array, and add or remove data from the array dynamically without needing to resize it as
shown in the next code snippet:

The next code snippet is the beginning of the actual automation portion of the script.
First, the script writes the script header to the console, binds to the RootDSE object, and
retrieves the DefaultNamingContext. This is done for two reasons. First, the script is
testing for a valid connection to an Active Directory domain. This test is performed

From VBScript to PowerShell 215

9

‘On Error Resume Next

‘===

‘ Check required args

‘===

If WScript.Arguments.Named.Exists(“groupname”) = FALSE Then

WScript.Arguments.ShowUsage()

WScript.Quit

End If

If WScript.Arguments.Named.Exists(“importfile”) = FALSE Then

WScript.Arguments.ShowUsage()

WScript.Quit

End If

‘===

‘ Set up job env

‘===

Const ForReading = 1

Const ForWriting = 2

ReDim arrUsers(0)

Dim arrMemberOf

Dim StdOut

Dim FSO

Dim strGroupName, strImportFile, strExportFile

Dim strDNSDomain, dictGroup, dictUsers

Set StdOut = WScript.StdOut

Set FSO = CreateObject(“Scripting.FileSystemObject”)

Set dictGroup = CreateObject(“Scripting.Dictionary”)

Set dictUsers = CreateObject(“Scripting.Dictionary”)

strGroupName = WScript.Arguments.Named(“groupname”)

strImportFile = WScript.Arguments.Named(“importfile”)

strExportFile = WScript.Arguments.Named(“exportfile”)

because if the script cannot connect to an Active Directory domain at this point during
its execution. Then the script will fail when it later tries to query information from Active
Directory. As in Chapter 8, this is an advanced form of error handling by determining
when a script might fail and including a method for preventing the failure.

Second, the script needs to get the current logon domain’s name for use later in the
script. Without this information, a script would have to be modified to ask users from
which domain they want to get group membership information. In environments with
multiple domains, you might want to add this feature to your scripts. However, for this
example, you don’t need it, so the script retrieves the domain’s name from the RootDSE
object and stores it in the strDNSDomain variable:

CHAPTER 9 PowerShell and Active Directory216

‘===

‘ Start Job

‘===

Mess “##”

Mess “# IsGroupMember #”

Mess “##”

Mess vbNullString

‘--------------------

‘ Test connection to domain

‘--------------------

StatStart “Test Domain Connection”

Set objRootDSE = GetObject(“LDAP://RootDSE”)

strDNSDomain = objRootDSE.Get(“DefaultNamingContext”)

Xerror

StatDone

In the following code example, an ADO object (objConnection) is created, which will be
used later in the script. Then the ParseFile function is used to import the user informa-
tion from the CSV file into the arrUsers array:

‘--------------------

‘ Set up ADODB connection

‘--------------------

StatStart “Set up ADODB Connection”

Dim objConnection

Dim objCommand

Dim objRecordSet

Set objConnection = CreateObject(“ADODB.Connection”)

Set objCommand = CreateObject(“ADODB.Command”)

Next, the script uses the ADO object created in the previous code example to perform an
LDAP search for the specified group in the current Active Directory domain. Based on
information from this search, the script determines whether the group exists and its
distinguishedName. Next, the script uses distinguishedName to bind directly to the group
object in Active Directory and retrieve the group’s members. The members are then
placed in the arrMemberOf array. This array is then stepped through with a For loop,
adding each group member to the dictGroup object with a placeholder value of
“Something” (which can be anything as long as the key/value pair is completed):

From VBScript to PowerShell 217

9

objConnection.Provider = “ADsDSOObject”

objConnection.Open(“Active Directory Provider”)

objCommand.ActiveConnection = objConnection

objCommand.Properties(“Page Size”) = 1000

Xerror

StatDone

‘--------------------

‘ Check CSV Import File

‘--------------------

StatStart “Checking Import File”

ParseFile strImportFile, arrUsers

StatDone

‘--------------------

‘ Get Group Membership Info

‘--------------------

StatStart “Get Group Membership Info”

objCommand.CommandText = _

“<LDAP://” & strDNSDomain & “>;(&(objectCategory=group)” _

& “(sAMAccountName=” & strGroupName & “));distinguishedName;subtree”

Set objRecordSet = objCommand.Execute

If objRecordset.RecordCount = 0 Then

StdOut.Write(vbTab)

StdOut.WriteLine(“Not a valid group!”)

WScript.Quit()

Else

Set objGroup = GetObject _

(“LDAP://” & objRecordSet.Fields(“distinguishedName”))

objGroup.getInfo

CHAPTER 9 PowerShell and Active Directory218

arrMemberOf = objGroup.GetEx(“member”)

For Each Member in arrMemberOf
dictGroup.Add Member, “Something”

Next
End If

Set objGroup = Nothing
StdOut.Write(vbTab)
StdOut.WriteLine(“[OK]”)

The following code snippet steps through the arrUsers array that was created by parsing
the import file:

‘--------------------
‘ Get User Info
‘--------------------
StatStart “Getting User Info”

For Each User In arrUsers
Err.Clear

objCommand.CommandText = _
“<LDAP://” & strDNSDomain & “>;(&(objectCategory=user)” _
& “(sAMAccountName=” & User & “));distinguishedName;subtree”

Set objRecordSet = objCommand.Execute

If objRecordset.RecordCount = 0 Then
dictUsers.Add User, “Doesn’t Exist”

Else
strUserDN = objRecordSet.Fields(“distinguishedName”)

If (dictGroup.Exists(strUserDN) = True) Then
dictUsers.Add User, “Yes”

Else
dictUsers.Add User, “No”

End If
End If

Set objRecordset = Nothing
strUserDN = vbNullString

Next
StatDone

For each user, the script performs an LDAP search in the current logon domain using the
ADO object. Users who don’t exist are added to the dictUsers object with the value
“Doesn’t Exist”. However, if a user does exist, the script takes the distinguishedName
from the recordset returned from the LDAP search and does a comparison operation to
see if that user exists in the dictGroup object.

To perform this comparison operation, the script uses the Dictionary object’s Exists()
method, which enables you to see whether a key exists in a Dictionary object. This is the
main reason for using the Dictionary object instead of a VBScript array. Next, based on
information returned from the Exists() method, the script adds the user to the
dictUsers object with a value of “Yes” to indicate the user is a group member or a value
of “No” when the user isn’t a group member.

The result is a collection of user information stored in the dictUsers object. Based on
information in this object, the script then loops through the users in the dictUsers
object and writes the information to the console, as shown in this next code example:

From VBScript to PowerShell 219

9

Mess vbNullString

Mess “[Name],[IsMember]”

For Each User In dictUsers

StdOut.Write User & “,”

StdOut.WriteLine dictUsers.Item(User)

Next

If the variable exportfile was defined when the script was executed, the script creates the
export file using the FSO object. Then the script again loops through the dictUsers object
and writes the user information into the export file. The following example shows the
code for this process:

‘--------------------

‘ Create Export File

‘--------------------

Mess vbNullString

StdOut.Write “Creating Import File...”

If strExportFile <> “” Then

Set objExportFile = FSO.OpenTextFile(strExportFile, ForWriting, TRUE)

For Each User In dictUsers

objExportFile.Write User & “,”

objExportFile.WriteLine dictUsers.Item(User)

Next

The last code snippet consists of the Subs and Functions that are used throughout the
script and the closing XML elements for the script. Further review of the final section of
the script is not needed because these Subs and Functions are either fairly self explana-
tory or have been previously discussed:

CHAPTER 9 PowerShell and Active Directory220

objExportFile.Close()

Set objExportFile = Nothing

StdOut.WriteLine “[DONE]”

End If

‘===

‘ Subs

‘===

‘--------------------

‘ General Message Sub

‘--------------------

Sub Mess(Message)

‘ Write to console

StdOut.WriteLine(Message)

End Sub

‘--------------------

‘ General Start Message Sub

‘--------------------

Sub StatStart(Message)

‘ Write to console

StdOut.Write(Message)

End Sub

‘--------------------

‘ General Finish Message Sub

‘--------------------

Sub StatDone

‘ Write to console

StdOut.Write(vbTab & vbTab)

StdOut.WriteLine(“[OK]”)

End Sub

‘--------------------

‘ General Xerror Sub

‘--------------------

From VBScript to PowerShell 221

9

Sub Xerror

If Err.Number <> 0 Then

‘ Write to console

StdOut.WriteLine(“ Critical Error: “ & CStr(Err.Number) _

& “ “ & Err.Description)

WScript.Quit()

End If

End Sub

‘===

‘ Functions

‘===

Function ParseFile(file, arrname)

‘ This function parses a file and gives you back an array

‘ (Skips the first line!!!)

On Error Resume Next

count = -1

‘ Open file for reading

Set objFile = FSO.OpenTextFile(file, ForReading)

objFile.SkipLine ‘note: This will always be the col headers

Xerror

‘ Reads each line in the file and places it into an array

Do While objFile.AtEndOfStream <> True

count = count + 1

If count > UBound(arrname) Then ReDim Preserve arrname(count)

arrname(count) = objFile.Readline

Loop

Xerror

‘ Close the file because you are done with it.

objFile.Close()

Set objFile = Nothing

count = 0

End Function

]]>

</script>

</job>

</package>

FIGURE 9.2 The IsGroupMember.ps1 script being executed without an export file

The IsGroupMember.ps1 Script
IsGroupMember.ps1 is a PowerShell conversion of the IsGroupMember.wsf script.
A working copy is in the Scripts\Chapter 9\IsGroupMember folder and is downloadable
at www.samspublishing.com. You need to define two parameters to run this script.
The GroupName parameter should have its argument set to the sAMAccountName of the
group that user membership is verified against. The ImportFile parameter should have its
argument set to the name of the CSV import file listing users who need to be verified. An
optional parameter, ExportFile, should have its argument set to the name of the export
file where data written to the script should be stored. Here’s the command to run the
IsGroupMember.ps1 script:

CHAPTER 9 PowerShell and Active Directory222

PS D:\Scripts> .\IsGroupMember.ps1 "TAO-D-RA-LS-LocalWorkstationPowerUsers"
".\users.csv" "export.csv"

Figure 9.2 shows the execution of the IsGroupMember.ps1 script without an export file
being specified and Figure 9.3 shows the execution of the script with an export file
having been specified:

FIGURE 9.3 The IsGroupMember.ps1 script being executed with an export file

www.samspublishing.com

From VBScript to PowerShell 223

9

The IsGroupMember.ps1 script performs the following sequence of actions:

1. The script connects to the current logon domain by using the .NET
System.DirectoryServices.ActiveDirectory.Domain class, and then retrieves the
domain name, which is written to the PowerShell console. If this connection fails,
the script halts.

2. The script verifies that the specified group exists in the current domain by using the
Get-ADObject function. If the group exists, the function returns an object bound to
the group object in Active Directory ($Group). If the group doesn’t exist, the script
halts.

3. The script uses the Test-Path cmdlet to verify that the import file is valid. If the file
is invalid, the script halts.

4. The script uses the Import-Csv cmdlet to populate the $Users variable with the
contents of the CSV import file.

5. The script uses the Get-ADObject function to verify that each user in the $Users
collection exists in the current domain and to bind to that user’s Active Directory
user object.

6. If the user exists, the script compares the user’s distinguishedName against distin-
guished names in the specified group’s ($Group) member attribute. When a match is
found, the user’s object is extended by using the Add-Member cmdlet to indicate the
user is a group member (“Yes”). If there’s no match, the user’s object is extended by
using the Add-Member cmdlet to indicate the user isn’t a group member (“No”). If the
user doesn’t exist in the current domain, the user’s object is extended by using the
Add-Member cmdlet to indicate that information (“Doesn’t Exist”).

7. If an export file has been specified, the script uses the Export-Csv cmdlet to create a
CSV file based on the $Users variable’s contents. If no export file has been specified,
the script writes the $Users variable’s contents to the PowerShell console.

The first code snippet contains the header for the IsGroupMember.ps1 script. In this
header includes information about what the script does, when it was updated, and the
script’s author. Just after the header are the script’s parameters:

##

IsGroupMember.ps1

Used to check if users are members of a

specified group.

#

Created: 10/21/2006

Author: Tyson Kopczynski

##

param([string] $GroupName, [string] $ImportFile, [string] $ExportFile)

Next, as seen in the following code snippet, the script loads the Get-ScriptHeader and
Show-ScriptUsage functions:

CHAPTER 9 PowerShell and Active Directory224

##

Functions

##

#---

Get-ScriptHeader

#---

Usage: Generates the script header statement.

$Name: The name of the script.

$Usage: What the script is used for.

function Get-ScriptHeader{

param ($Name, $Usage)

$Date = Date

$Text = “###################################### `n”

$Text += “# Script $Name `n”

$Text += “# Usage: $Usage `n”

$Text += “# User: $Env:username `n”

$Text += “# Date: $Date `n”

$Text += “######################################”

$Text

}

#---

Show-ScriptUsage

#---

Usage: Used to show script usage information.

function Show-ScriptUsage{

write-host

write-host “Usage: ISGroupMember -GroupName value” `

“-ImportFile value -ExportFile value”

write-host

write-host “Options:”

write-host

These functions are used to display script usage information similar to what a WSF script
displays, as shown in this example:

From VBScript to PowerShell 225

9

write-host “GroupName `t: The name of the group to check.”

write-host “ImportFile `t: The import CSV file path/filename.”

write-host “ExportFile `t: [Optional] The export CSV file.” `

“path/filename.”

write-host

write-host “CSV Format:”

write-host “sAMAccountName”

write-host

write-host “Example:”

write-host ‘ISGroupMember.ps1 “mygroup”’ `

‘“users.csv” “results.csv”’

write-host

}

PS D:\Scripts .\IsGroupMember.ps1

Please specify the group name!

######################################
Script IsGroupMember
Usage: Used to check if users are members of a specified group.
User: tyson
Date: 12/17/2006 09:12:16
######################################

Usage: ISGroupMember -GroupName value -ImportFile value -ExportFile value

Options:

GroupName : The name of the group to check.
ImportFile : The import CSV file path/filename.
ExportFile : [Optional] The export CSV file. path/filename.

CSV Format:
sAMAccountName

Example:
ISGroupMember.ps1 "mygroup" "users.csv" "results.csv"

PS D:\Scripts

A helpful feature of a WSF file is that it can be used to give users information about the
script’s purpose and parameters and examples of how to use it. Users don’t have to read
comments or refer to external documentation to understand what a script does and how
to use it. This feature improves users’ experience with an automation script, thus increas-
ing the chance that they will consider your scripts highly usable.

Unfortunately, PowerShell lacks this feature. The best you can do with PowerShell is
define the required parameters and give information about their use by means of the
throw keyword. The throw keyword has been used in previous scripts, but it doesn’t
display information in the same user-friendly format that WSF scripts do. To achieve this
same level of usability, additional logic had to be added in the form of the Show-
ScriptUsage and Get-ScriptHeader functions. Show-ScriptUsage defines what the script
does, its parameters, and how it can be used. Although you can reuse this function’s
structure in other scripts, the content is static and must be changed for each script. Get-
ScriptHeader is simply used to display a script title. It can be reused in other scripts with
little modification because the $Name and $Usage parameters are what define the informa-
tion in the output.

The end result is that the functions in the script usage information displayed in the
previous example is similar to what’s produced from a WSF script. Although modifying
Show-ScriptUsage for reuse is a little cumbersome, the benefit of these simple, generic
functions is the illusion of a script that has been written for users rather than scripters.
These functions are used throughout the remainder of the book.

NOTE

A possible enhancement to the Show-ScriptUsage function is making it more generic
so that it can be used in other scripts without modification. For example, the informa-
tion returned from this function could be based on an XML string structured much like
a WSF file.

After the script has loaded the usage functions, the next two functions to be loaded are
used to interact with Active Directory:

CHAPTER 9 PowerShell and Active Directory226

#---

Get-CurrentDomain

#---

Usage: Used to get the current domain.

function Get-CurrentDomain{

[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

}

#---

Get-ADObject

#---

The first function, Get-CurrentDomain, is a basic function that binds to the current logon
domain object. To do this, the function uses a .NET Framework reference to the
System.DirectoryServices.ActiveDirectory.Domain class (as discussed in Chapter 3,
“PowerShell: A More In-Depth Look”) with the GetCurrentDomain() method. Next, the
function returns the resulting domain object, which verifies a connection to the domain
and provides a method to display the domain’s DNS name to script users (a visual
reminder that the domain information is being queried).

The second function, Get-ADObject, verifies an object’s existence in Active Directory
based on a unique identifier, such as the sAMAccountName or distinguishedName attrib-
utes. Then it connects to that object by using the System.DirectoryServices.
DirectorySearcher class, which is a .NET method for performing Active Directory
searches. When calling Get-ADObject, you must provide the object’s unique identifier
($Name), the type of object ($Item) that the unique identifier is (sAMAccountName or
distinguishedName), and the object’s category ($Cat) type (User, Computer, or Group).
Using these values, Get-ADObject creates a $Searcher object and sets its Filter property
to an LDAP search string constructed from the information you’ve provided. Next,
Get-ADObject uses the $Searcher object’s FindOne() method, which performs the search
and returns only the first entry found. Last, the GetDirectoryEntry() method is used on
the returned search entry to bind to the referenced object in Active Directory. At this
point, you have either verified that an object exists, or you can interrogate the object
returned from the function for more information.

From VBScript to PowerShell 227

9

Usage: Used to retrieve an object from Active Directory.

$Item: The object item type. (sAMAccountName or distinguishedName)

$Name: The name of the object. (sAMAccountName or distinguishedName)

$Cat: The object category.

function Get-ADObject{

param ($Item, $Name, $Cat)

trap{Continue}

$Searcher = new-object DirectoryServices.DirectorySearcher

$SearchItem = “$Item”

$SearchValue = “$Name”

$SearchCat = “$Cat”

$Searcher.Filter = `

“(&($($SearchItem)=$($SearchValue))(objectCategory=$($SearchCat)))”

$Searcher.FindOne().GetDirectoryEntry()

}

In the following code snippet, the $ScriptName and $ScriptUsage variables are defined.
These variables will be used later in the script to display the script usage information:

CHAPTER 9 PowerShell and Active Directory228

##

Main

##

#--------------------

Set Config Vars

#--------------------

$ScriptName = “IsGroupMember”

$ScriptUsage = “Used to check if users are members of a specified group.”

#--------------------

Verify Required Parameters

#--------------------

if ($args[0] -match ‘-(\?|(h|(help)))’){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage

Return

}

In addition to displaying information on the script’s usage information, the Get-
ScriptHeader and Show-ScriptUsage functions also provide a help scheme when users
define the first argument as one of these strings: -?, -h, and -help. To do this, the script
makes use of the match comparison operator defined in this statement: $args[0] -match
‘-(\?|(h|(help)))’ as shown in the following code snippet:

The next two code sections are methods to check for required script parameters. Previous
script examples relied on the throw keyword when defining a parameter (with the param
keyword), thus controlling what parameters were required. In this script, instead of just
using the throw keyword, you check for the required parameter later in the script to give
script users a helpful message stating that they forgot to provide an argument for a
required parameter. You can also give script users information about parameters, their use,
and examples of arguments.

Last, Get-ScriptHeader is used to display a script header, which gives users visual confir-
mation that they’re running the right script. In addition, if the script takes several hours
to finish, the header displays the date and time the script started to let users know how
long it has been running.

The point of these functions is to improve the script’s usability, a quality that’s often over-
looked in scripts and CLIs. Lack of usability is one of the main reasons Windows system
administrators have stayed away from using scripts and CLIs for managing their Windows
environments. The PowerShell team recognized the usability problems of past CLIs and
scripting languages and made an effort to create a shell and language not only for
scripters, but also for IT professionals. When you develop your scripts, keep users’ percep-
tions in mind. As discussed in Chapter 5, “PowerShell Scripting Best Practices,” automa-
tion is but one part of the puzzle when developing a script.

From VBScript to PowerShell 229

9

if (!$GroupName){

write-host

write-host “Please specify the group name!” -Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage

Return

}

if (!$ImportFile){

write-host

write-host “Please specify the import CSV filename!” -Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage

Return

}

#--------------------

Begin Script

#--------------------

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

In the next code snippet, the Get-ScriptHeader function is used to indicate to the script
operator that the automation portion of the script has started:

The next step is for the script to verify that there is a valid domain connection. To accom-
plish task, the script uses the Get-CurrentDomain. If a valid domain connection doesn’t
exist, the script halts and returns the script status to the operator. If a connection does
exist, the script continues execution and writes the domain name to the console, as
shown in the next code snippet:

In the next code snippet, the group name in the $GroupName variable is verified. To
perform the verification, the script uses Get-ADObject function. This function connects to
Active Directory and completes a search for the group by its name. If an object is returned
from the function, then the group name is valid; if no object is returned, the group name
is considered invalid and the script halts:

CHAPTER 9 PowerShell and Active Directory230

.{

trap{write-host `t “[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

write-host “Domain Connection” -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain’s name

write-host `t $Domain.Name -Foregroundcolor Green

}

write-host “Checking Group Name” -NoNewLine

Now get the group# Now get the group

$Group = Get-ADObject “sAMAccountName” $GroupName “Group”

if (!$Group){

write-host `t “Is not valid!” -Foregroundcolor Red

write-host

Break

}

else{

write-host `t “[OK]” -Foregroundcolor Green

}

The last verification task to verify the validity of import file name in the $ImportFile

variable by using the Test-Path cmdlet:

In the following code snippet, the script is completing the user’s group membership veri-
fication. As explained previously, based on the user’s validity in Active Directory and if
they are a member of the specified group ($GroupName), the script extends the user’s
object in the $Users collection:

From VBScript to PowerShell 231

9

write-host “Checking Import File” -NoNewLine

if (!(test-path $ImportFile -pathType leaf)){

write-host `t “Is not a valid file!” -Foregroundcolor Red

write-host

Break

}

else{

write-host `t “[OK]” -Foregroundcolor Green
}

#--------------------

Check Each User’s Group Membership

#--------------------

$Users = import-csv $ImportFile

foreach ($User in $Users){

&{

$sAMAccountName = $User.sAMAccountName

$ADUser = Get-ADObject “sAMAccountName” $sAMAccountName “User”

if ($ADUser){

[string]$DN = $ADUser.distinguishedName

$IsMember = $Group.Member | `

where {$_ -eq $DN}

if ($IsMember){

add-member -inputObject $User -membertype noteProperty `

-name “IsMember” -value “Yes”

}

else{

add-member -inputObject $User -membertype noteProperty `

-name “IsMember” -value “No”

}

}

You might recall from previous chapters that the & call operator runs a script block in its
own scope. When the script block finishes, its scope is destroyed along with anything
defined in that scope.

In the previous code snippet example, the & call operator is used so that variable names
can be recycled without having to worry about old data. For example, when you come
out of the for loop, the $sAMAccountName and $ADUser variable names are still valid
objects. Instead of risking the possibility of using these old objects accidentally, you just
use the & call operator to make sure the object is destroyed after running the script block.

The task as shown in the following code snippet is to either write the contents of the
$Users collection to the console. Or, if an export file has been specified, the contents are
written to a CSV file using the Export-CSV cmdlet.

CHAPTER 9 PowerShell and Active Directory232

else{

What if the user doesn’t exist?

add-member -inputObject $User -membertype noteProperty `

-name “IsMember” -value “Doesn’t Exist”

}

}

}

if (!$ExportFile){

$Users

}

else{

write-host

write-host “Exported Data To: “ -NoNewLine

$Users | export-csv $ExportFile

write-host “$ExportFile” -Foregroundcolor Green

write-host

}

Summary
In this chapter, you explored how PowerShell interacts with ADSI and how it can be used
to read and modify Active Directory objects. During this exploration, you learned that
PowerShell has the same access to Active Directory management interfaces, if not more
with its relationship with .NET Framework, as WSH. In addition to reviewing how
PowerShell can be used to manage Active Directory, you also reviewed a working script
that is used to determine if a list of users are members of a group. Like WSH, this is but
one of the many possible types of Active Directory management scripts that can be
developed using PowerShell.

PART III

Using PowerShell
to Meet Your
Automation Needs

IN THIS PART

CHAPTER 10 PowerShell and Systems
Management 235

CHAPTER 11 PowerShell and Exchange 261

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. The PSShell.ps1 Script

. The ChangeLocalAdminPassword.ps1
Script

CHAPTER 10

Using PowerShell
in the Real-World

This chapter shows you how powerful PowerShell can be
when managing Windows environments. You review two
PowerShell scripts used for systems management. The first
script, PSShell.ps1, manages user interaction with the
Windows desktop by creating a controlled, secure, and
attractive desktop replacement. The second script,
ChangeLocalAdminPassword.ps1, manages local administra-
tor passwords on servers in an Active Directory domain.

These scripts demonstrate how to meet an organization’s
systems management needs. As you step through each
script, you learn new PowerShell concepts and see how
they can be applied to meet your automation needs.

The PSShell.ps1 Script
PSShell.ps1 can be used as a secure shell solution for
kiosk workstations. A working copy is in the Scripts\
Chapter 10\PSShell folder and is downloadable at
www.samspublishing.com. This script requires an
understanding of Windows Shell Replacement. Make sure
you read the following sections about the script compo-
nents to ensure that you know how to deploy and use the
script effectively. First, however, you should review why
this script is needed.

companyabc.com manufactures processors for the general
public and the U.S. government. Employees working on
processors intended for government use must have special
security clearance, and any data related to manufacturing
these processors must be secured to prevent exposure to
unauthorized entities, both inside and outside the
company.

www.samspublishing.com

These security requirements pose a challenge for companyabc.com. Its IT department has
to support business procedures for both the retail and government contract divisions.
Also, companyabc.com’s CEO has issued a directive that all computer use must take place
on a centralized system, which means all users at any location must have access to data
and applications, which further complicates security measures.

The IT department’s solution to meet these requirements involves deploying Windows
Terminal Services (WTS) server farms. Users working on the retail side would have one set
of WTS farms with a lower level of security. Users working in the government contract
division would have a different set of WTS farms isolated from retail users and with a
high degree of security.

The IT department has decided to use thin clients for the WTS farms for quick deploy-
ment and a high degree of control over access and data security. However, although
companyabc.com has the budget to build the WTS farms, funds to purchase thin clients
and thin client software for all users aren’t available. Further complicating matters is a
recent company-wide Windows XP desktop refresh. In addition, desktop hardware that
was just purchased must be used for another few years until it can be replaced.

To stay within the budget, the IT department has searched for an inexpensive way to turn
the existing Windows XP desktops into thin clients. One systems administrator read a
technical article about using Windows Shell Replacement to turn a Windows XP desktop
into a secure kiosk, but it involves replacing Windows Explorer with Internet Explorer to
create the kiosk interface. Although this method is fine for a simple Web browsing kiosk,
the IT department needs complete control over the user interface shell.

To meet this need, the IT department has decided to use PowerShell and its support of
.NET Windows Forms as a way to provide a customizable shell replacement for Windows
Explorer. After development and testing, the final solution to companyabc.com’s thin-
client need is a hybrid of several different components. These components include
Windows Shell Replacement, which uses cmd.exe as the base shell, and a PowerShell
script that uses Windows Forms to present a secure, Windows Explorer–like desktop to
logged on users. The following sections explain the components of PSShell.ps1 (named
PSShell Kiosk) in more detail.

Component One: Shell Replacement
PSShell Kiosk’s first component is the shell replacement. Windows, by default, uses the
Windows Explorer shell (explorer.exe) as an interface for interacting with the operating
system. However, this shell is not required to run Windows. Sometimes users want more
functionality than Windows Explorer offers, or they want to decrease functionality as a
way to improve security, as is the case with companyabc.com.

Windows users and administrators can modify explorer.exe or replace it with another
shell (although it might not be supported by Microsoft). This process is called Windows
Shell Replacement. Shells that can be used with Windows Shell Replacement range from

CHAPTER 10 Using PowerShell in the Real World236

GUI-based shells, such as Internet Explorer (iexplore.exe), Geoshell, and LiteStep, to
CLI-based shells, such as cmd.exe, command.com, and even PowerShell.

You can use two methods to replace explorer.exe. One is modifying the Windows
Registry and specifying your replacement shell in the Shell value found in the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon key.

For companyabc.com, changing the Registry on every Windows XP desktop isn’t an
option. Furthermore, getting rid of the shell for the entire Windows XP installation isn’t
wise. Suppose IT technicians need to log on to machines to perform system maintenance.
If the default shell for the entire machine has been replaced by using the Registry
method, the technicians are stuck with using the limited replacement shell because the
shell has been changed for all users. Although there are ways to enable user-based shell
replacement in the Registry, changing the Registry isn’t a user-friendly or effective way to
manage the deployment of replacement shells, as companyabc.com’s IT department has
discovered.

The second method for replacing explorer.exe, which requires Active Directory, is using
the Group Policy Object (GPO) setting called Custom user interface. This setting allows
you to specify the shell for users when they log on to a machine. The benefits of using
GPOs include centralization and ease of management. In addition, you can have different
shell settings based on the user, not the machine the user is logging on to. Because
companyabc.com is looking for this type of control, the IT department has chosen the
GPO method to manage the PSShell Kiosk. The following sections explain the steps to set
up this solution.

Step One: Creating the PSShell Secure Kiosk GPO
To create the GPO for configuring the Windows Shell Replacement, follow these steps:

1. Using the Group Policy Management Console (GPMC), create a GPO called PSShell
Kiosk Desktop GPO.

2. Next, disable the Computer Configuration settings.

3. Remove Authenticated Users from the security filter settings for the PSShell Kiosk
Desktop GPO.

4. In the Active Directory Users and Computers console, create a Domain Local group
called PSShell Kiosk Desktop GPO - Apply and add a test user account to the
group.

5. Add the PSShell Kiosk Desktop GPO - Apply group to the security filter settings for
the PSShell Kiosk Desktop GPO.

6. Finally, link the PSShell Kiosk Desktop GPO to the top-level organizational unit
(OU) containing all your user accounts, and make sure the linking order of any
other GPOs doesn’t override the PSShell Kiosk Desktop GPO.

The PSShell.ps1 Script 237

1
0

NOTE

Linking the PSShell Kiosk Desktop GPO to the top-level OU containing user accounts
assumes there are no other GPOs linked to child OUs that might override this GPO.
Furthermore, the GPO is applied to a group of users instead of a group of machines to
prevent users with a higher security clearance from having a nonsecured desktop.

Step Two: Configuring the Windows Shell Replacement Settings
Next, you configure the Windows Shell Replacement settings by following these steps:

1. In the Group Policy Management Console (GPMC), edit the PSShell Kiosk Desktop
GPO.

2. In the GPMC, click to expand User Configuration, Administrative Templates, and
then System. Then click to select the Custom user interface setting.

3. Right-click Custom user interface and click Properties.

4. In the Custom user interface Properties dialog box, click to select the Enabled
option, type cmd /c “C:\PSShell\Launch.bat” in the Interface file name text box,
as shown in Figure 10.1, and then click OK.

CHAPTER 10 Using PowerShell in the Real World238

FIGURE 10.1 Custom user interface Properties dialog box

Setting the interface filename to cmd forces Windows to use cmd.exe as the replacement
shell. The /c switch forces cmd to carry out the C:\PSShell\Launch.bat command and
then stop, which closes the cmd window after the Launch.bat file has finished running.

NOTE

Using the C:\PSShell path assumes that the files for PSShell Kiosk have been copied
to this location on the client’s machine. However, these files don’t necessarily need to
be copied to this location. They can be located on clients or a Windows network share.

Component Two: PSShell.exe
You might be wondering why cmd is used as the replacement shell instead of PowerShell.
Unfortunately, when you’re running a PowerShell script, there’s no way to do so without
displaying the PowerShell console. If explorer.exe is replaced with PowerShell, the result-
ing desktop contains the PowerShell console.

However, companyabc.com wants users to have a desktop similar to explorer.exe, not a
desktop containing the PowerShell console. The solution involves the second component,
PSShell.exe. PSShell.exe is a C# Windows application that hides the PowerShell console
when PSShell.ps1 runs. The following code snippet shows the source code for this
application:

The PSShell.ps1 Script 239

1
0

using System;

using System.Diagnostics;

namespace PSShell

{

static class Program

{

static void Main()

{

Process Process = new Process ();

Process.StartInfo.FileName = “powershell.exe “;

Process.StartInfo.Arguments = “-Command \”C:\\PSShell\\PSShell.ps1\””;

Process.StartInfo.CreateNoWindow = true;

Process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;

Process.Start();

}

}

}

To hide the PowerShell console, PSShell.exe makes use of the .NET System.Diagnostics.
Process class. By using this class with the .NET ProcessWindowStyle enumeration, you
can define how a process’s window should appear when it starts. The style (appearance)
can be Hidden, Normal, Minimized, or Maximized. For this example, you want the

PowerShell window’s style to be defined as Hidden. After starting the PowerShell process
by using the Start() method with the specified arguments to run PSShell.ps1, Windows
doesn’t draw (display) the PowerShell console.

NOTE

Again, the C:\PSShell path in the PSShell.exe source code is only a suggestion. If
you change the deployment path for PSShell Kiosk, you need to update the code and
build a new executable. If you’re familiar with C#, however, a better solution is modify-
ing PSShell.exe so that it can take arguments to define the path to the PSShell.ps1
script.

To understand why cmd is used as the replacement shell, remember that PSShell.exe is
not a shell, but an application written to suppress the PowerShell console when running a
script. It’s also needed to start PowerShell and run PSShell.ps1 so that the PowerShell
console is hidden. To start PSShell.exe, however, you need to call it from another shell,
such as cmd. The interface filename you entered for the Custom user interface setting
specified a batch file named Launch.bat, which is used to start PSShell.exe.

The result is that cmd is used to run Launch.bat, which then starts PSShell.exe.
PSShell.exe, in turn, starts PowerShell, which finally runs the PSShell.ps1 script. This
workaround is a bit convoluted but necessary to compensate for a feature PowerShell
lacks. With this workaround, you can still use PowerShell to generate a secure desktop.

Component Three: PSShell.ps1
The last component of PSShell Kiosk is PSShell.ps1, which generates the PSShell Kiosk
desktop for logged on users. This desktop is generated by a Windows Form, which is
possible because of PowerShell’s capability to use .NET Windows Forms. The sole purpose
of this script is to give users the illusion of seeing the default Windows desktop, when
they’re actually using a custom desktop with limited functionality.

The PSShell Kiosk solution determines what users see and what programs they can run
from the desktop. companyabc.com wants high-security users to be able to perform these
tasks on a secure desktop:

. Starting the Microsoft Remote Desktop (RDP) client, which is configured to connect
to the secure WTS farm

. Starting a limited instance (by GPO) of Internet Explorer that navigates to compa-
nyabc.com’s Web-based e-mail site

. Logging off the PSShell Kiosk when they’re finished using it

The first code snippet contains the header for the PSShell.ps1 script. This header
includes information about what the script does, when it was updated, and the script’s
author:

CHAPTER 10 Using PowerShell in the Real World240

In the next code snippet, are two long, complex statements involving the .NET
System.Reflection.Assembly class:

The PSShell.ps1 Script 241

1
0

##

PSShell.ps1

Used as a shell replacement for explorer.exe.

Created: 10/17/2006

Author: Tyson Kopczynski

##

$Null=[System.Reflection.Assembly]::LoadWithPartialName(“System.Windows.Forms”)

$Null=[System.Reflection.Assembly]::LoadWithPartialName(“System.Drawing”)

These two statements are necessary because PowerShell loads only a few .NET assemblies
into its AppDomain. For example, if you try to create a Windows Forms object with the
New-Object cmdlet, you would get the following error:

PS C:\> $Form = new-object System.Windows.Forms.Form
New-Object : Cannot find type [System.Windows.Forms.Form]: make sure
the assembly containing this type is loaded.
At line:1 char:19
+ $Form = new-object <<<< System.Windows.Forms.Form
PS C:\>

To use the System.Windows.Forms.Form class, you need to load the assembly into
PowerShell first by using the LoadWithPartialName() method. Assemblies must also be
loaded into PowerShell for .NET-based DLLs included with Microsoft SDKs, third-party
vendors, or your custom DLLs. For example, say you develop a .NET-based DLL to manage
xyz application. To use that DLL in PowerShell, you use the LoadFrom() or LoadFile()
methods from the System.Reflection.Assembly class, as shown in this example:

PS C:\> [System.Reflection.Assembly]::LoadFrom("C:\Stuff\myfirst.dll")
0
PS C:\>

NOTE

Microsoft has made the LoadWithPartialName() method obsolete. The replacement
is the Load() method, which is meant to prevent partial binds when .NET assemblies
are loaded. Using the Load() method requires more work. However, if you don’t mind
the implications of a partial bind (such as your script failing), you can continue using
LoadWithPartialName() until it’s removed from the .NET Framework.

Now that the required assemblies for Windows Forms objects have been loaded, the next
task is to finish configuring the runtime environment for the script. The first step, as
shown in the following code snippet, is to define a set of launch command strings that
will be used to control the applications users can launch from the PSShell Kiosk
desktop. These command strings are discussed in more depth later in this section:

CHAPTER 10 Using PowerShell in the Real World242

Launch command strings

$LaunchIE = {$IE = new-object -com InternetExplorer.Application; `

$IE.navigate(“webmail.companyabc.com”); $IE.visible = $True; $IE}

$LaunchRemoteDesktop = {mstsc /v:earth.companyabc.com /f}

Then after defining the launch command strings, the next task is to create a PowerShell
Runspace, as demonstrated in the next code snippet:

#--------------------

Create Runspace

#--------------------

For more info on Runspaces see:

http://windowssdk.msdn.microsoft.com/en-us/library/ms714459(VS.80).aspx

$Runspace =

[System.Management.Automation.Runspaces.RunspaceFactory]::CreateRunspace()

$RunspaceInvoke =

new-object System.Management.Automation.RunspaceInvoke($Runspace)

$Runspace.Open()

This code shows a PowerShell runspace, which is represented by the PowerShell
System.Management.Automation.Runspaces namespace. A runspace is an abstraction of
the PowerShell runtime that allows a hosting application to run PowerShell commands to
perform tasks or gather information. Although powershell.exe is a hosting application
and uses its own runspace to process commands, runspaces are most beneficial when used
in applications outside PowerShell.

http://windowssdk.msdn.microsoft.com/en-us/library/ms714459(VS.80).aspx

Runspaces are needed to support PowerShell, but they were developed mainly to create an
easy way for other applications to call the PowerShell runtime and have it run PowerShell
commands. In a sense, the Windows Form that PSShell.ps1 creates is an application, so
it makes sense for it to interact with a PowerShell runspace to perform tasks. By taking
advantage of PowerShell runspaces, you then don’t have to spend time adding logic to
the Windows Form to make it perform tasks for users.

Creating a runspace ($Runspace) for the Windows Form simply involves using the
CreateRunspace() method from the PowerShell System.Management.Automation.
Runspaces.RunspaceFactory class. Next, you create a RunspaceInvoke object that allows
the Windows Form to run commands via the runspace. Last, you open the runspace by
using the Open() method so that it can be used by the Windows Form.

After defining the runspace, the next task is to construct the form itself as shown in the
following code snippet. The section that is titled “Define Images,” a series of
Drawing.Image objects are created. These objects will be used later in the form to repre-
sent such items are the PSShell Kiosk desktop start menu and application icons. Then in
the code section, titled “Create Form,” the form object is created using a set of predefined
properties used to make the form look like the default Windows desktop.

The PSShell.ps1 Script 243

1
0

#--------------------

Define Images

#--------------------

$ImagePath = Split-Path -Parent $MyInvocation.MyCommand.Path

$ImgStart = [Drawing.Image]::FromFile(“$Imagepath\Images\Start.png”)

$ImgRDP = [Drawing.Image]::FromFile(“$Imagepath\Images\RDP.png”)

$ImgIE = [Drawing.Image]::FromFile(“$Imagepath\Images\IE.png”)

#--------------------

Create Form

#--------------------

$Form = new-object System.Windows.Forms.Form

$Form.Size = new-object System.Drawing.Size @(1,1)

$Form.DesktopLocation = new-object System.Drawing.Point @(0,0)

$Form.WindowState = “Maximized”

$Form.StartPosition = “CenterScreen”

$Form.ControlBox = $False

$Form.FormBorderStyle = “FixedSingle”

$Form.BackColor = “#647258”

Having constructed the form, the final task before activating the form and showing it to
the user is to add in the menu items. The following code adds several MenuItems to the
ToolStripMenu that acts as the Start Menu for the PSShell Kiosk desktop:

Basically, the preceding code snippet shows several MenuItems being added to the
ToolStripMenu, which is acting as the start menu for the PSShell Kiosk desktop. These
menu items are the way users start applications or log off the PSShell Kiosk desktop. Each

CHAPTER 10 Using PowerShell in the Real World244

#--------------------

Build Menu

#--------------------

$MenuStrip = new-object System.Windows.Forms.MenuStrip

$MenuStrip.Dock = “Bottom”

$MenuStrip.BackColor = “#292929”

Start Menu

$StartMenuItem = new-object System.Windows.Forms.ToolStripMenuItem(“”)

$StartMenuItem.Padding = 0

$StartMenuItem.Image = $ImgStart

$StartMenuItem.ImageScaling = “None”

Menu Item 1

$MenuItem1 = new-object System.Windows.Forms.ToolStripMenuItem(“&Webmail”)

$MenuItem1.Image = $ImgIE

$MenuItem1.ImageScaling = “None”

$MenuItem1.add_Click({$RunspaceInvoke.Invoke($LaunchIE)})

$StartMenuItem.DropDownItems.Add($MenuItem1)

Menu Item 2

$MenuItem2 = new-object System.Windows.Forms.ToolStripMenuItem(“&Remote Desktop”)

$MenuItem2.Image = $ImgRDP

$MenuItem2.ImageScaling = “None”

$MenuItem2.add_Click({$RunspaceInvoke.invoke($LaunchRemoteDesktop)})

$StartMenuItem.DropDownItems.Add($MenuItem2)

Menu Item 3

$MenuItem3 = new-object System.Windows.Forms.ToolStripMenuItem(“&Log Off”)

$MenuItem3.add_Click({`

$RunspaceInvoke.invoke({Get-WmiObject Win32_OperatingSystem | `

foreach-object {$_.Win32Shutdown(0)}})})

$StartMenuItem.DropDownItems.Add($MenuItem3)

menu item is assigned a click event that uses the $RunspaceInvoke object and its
invoke() method to run a specified PowerShell command. The following list describes the
action each menu item performs:

. $MenuItem1—Uses the command specified in the $LaunchIE variable to start Internet
Explorer

. $MenuItem2—Uses the command specified in the $LaunchRemoteDesktop variable to
start mstsc.exe (the Microsoft RDP client)

. $MenuItem3—Uses the Get-WmiObject cmdlet to log off Windows

Last, the script needs to activate the form and show it to the user using the ShowDialog
method. This is shown in the final code snippet:

The PSShell.ps1 Script 245

1
0

#--------------------

Show Form

#--------------------

$MenuStrip.Items.Add($StartMenuItem)

$Form.Controls.Add($MenuStrip)

$Form.Add_Shown({$Form.Activate()})

$Form.ShowDialog()

Putting It All Together
After the PSShell Kiosk Desktop GPO is configured and ready to be applied to users, the
next step is to deploy the following PSShell Kiosk files to the desktops used as secure thin
clients:

. Launch.bat—The batch file used to start PSShell.exe

. PSShell.exe—The C# application used to run the PSShell.ps1 script

. PSShell.ps1—The PowerShell script that creates the PSShell Kiosk

. Images folder—The folder containing images used on the PSShell Kiosk desktop

As discussed earlier, the PSShell Kiosk solution is currently configured to reside in the
C:\PSShell path. So after you have deployed these files to this location on each desktop,
you can place users who need a secure desktop in the PSShell Kiosk Desktop GPO - Apply
group. Figure 10.2 shows the PSShell Kiosk desktop with the three menu items.

FIGURE 10.2 The PSShell Kiosk desktop

The ChangeLocalAdminPassword.ps1 Script
The ChangeLocalAdminPassword.ps1 script was developed to address a time-consuming
task for systems administrators. This task is the routine (as in scheduled) or forced
(because the network was attacked) local administrator password change. Changing this
password ranks as one of the biggest chores of systems management activities, and
administrators often neglect this task because it’s so tedious.

companyabc.com operates a Windows Server 2003 server farm of 500 servers. As part of
the company’s security practices, the IT department tried to change the local administra-
tor password routinely on all 500 servers, usually every 30 days or when a systems admin-
istrator left the company. Not surprisingly, because of the time and effort to change the
administrator password on 500 servers, the IT department tended to fall behind schedule
in completing this task. Eventually, they stopped trying to change local administrator
passwords, which soon resulted in a major security incident: An external entity took
advantage of the lapse in password management practices to commandeer a number of
companyabc.com’s servers and demanded a ransom to return control of these systems.

This incident prompted the IT department to seek a way to change local administrator
passwords quickly and en masse. They decided to use an automation script that creates a
list of servers in a specified OU, and then connects to each server and changes the local
administrator password. To meet this need, the ChangeLocalAdminPassword.ps1 script was
developed.

CHAPTER 10 Using PowerShell in the Real World246

A working copy is in the Scripts\Chapter 10\ChangeLocalAdminPassword folder and is
downloadable at www.samspublishing.com. Running this script requires defining one
parameter: OUDN. This parameter’s argument should be set to the distinguishedName of
the OU containing the servers that need to have their local administrator passwords
changed. Here’s the command to run the ChangeLocalAdminPassword.ps1 script:

The ChangeLocalAdminPassword.ps1 Script 247

1
0

PS D:\Scripts> .\ChangeLocalAdminPassword.ps1 "OU=Servers,OU=Managed
Objects,DC=companyabc,DC=com"

Figures 10.3 and 10.4 show the ChangeLocalAdminPassword.ps1 script being executed.

FIGURE 10.3 Changing the Local Admin Password

FIGURE 10.4 ChangeLocalAdminPassword.ps1 script completion

The ChangeLocalAdminPassword.ps1 script performs the following sequence of actions:

1. The script dot sources the LibraryCrypto.ps1 library file, which contains a function
for randomly generating passwords.

www.samspublishing.com

2. The script creates a new DataTable object ($ServersTable) by using the .NET
System.Data.DataSet class. This DataTable object is used later in the script to store
status information about machines in the specified OU.

3. In addition, the script creates an error log named ChangeLocalAdminPassword_
Errors.log by using the Out-File cmdlet. This error log displays detailed error
information to users.

4. The script connects to the current logon domain by using the Get-CurrentDomain
function. Using the object returned from this function, the script then writes the
domain’s name to the PowerShell console. If this connection fails, the script halts.

5. Next, the script verifies that the specified OU exists in the current domain by using
the Get-ADObject function. If the OU is not valid, the script halts.

6. The script uses the Set-ChoiceMesssage and New-PromptYesNo functions to ask users
whether they want a randomly generated password or one they specify. For
randomly generated passwords, the script uses the New-RandomPassword function
from the LibraryCrypto.ps1 library file to generate a password of a specified length
that’s stored as a secure string ($Password) and returned to the user for verification.
For user-specified passwords, the script uses the Read-Host cmdlet with the
AsSecureString property to collect the password and store it in a secure string
($Password).

7. Next, the script uses the .NET DirectoryServices.DirectoryEntry class to bind to
the specified OU in Active Directory and then the .NET DirectoryServices.
DirectorySearcher class to create a $Searcher object. The SearchRoot property for
the $Searcher object is set to the bound OU object, and an LDAP search is
performed to populate the $Computers variable with all servers in the OU.

8. Next, the script uses the System.Net.NetworkInformation.Ping class to ping each
server that is in the $Servers object collection. If a server replies then a new row is
added into the $ServersTable DataTable which consists of the server’s name and
its “Online” status. If a server doesn’t reply, a new row is still added into the
$ServersTable DataTable; however, that server’s status is set to “Offline”.

9. The script uses the System.Net.NetworkInformation.Ping class to ping each server
in the $Computers object collection. If a server replies, a new row is created in the
$ServersTable DataTable consisting of the server’s name and its “Online” status. If
a server doesn’t reply, a new row is created in the $ServersTable DataTable with
the server’s status set to “Offline”.

10. The listing of servers and their status information is sent to the script’s error log for
future reference by using the Out-File cmdlet.

11. Next, the script uses the .NET System.Runtime.InteropServices.Marshal class to
convert the secure string stored in the $Password variable to a regular string that can
be used later in the script.

CHAPTER 10 Using PowerShell in the Real World248

12. Finally, for each server with an “Online” status in $ServersTable, the Get-
WmiObject cmdlet is used to connect to the server and return a list of user accounts.
The local administrator account has a security ID (SID) ending with “-500”. The
script binds to this account by using the ADSI WinNT provider and changes its pass-
word to the string now stored in the $Password variable.

Here’s the LibraryCrypto.ps1 library file:

The ChangeLocalAdminPassword.ps1 Script 249

1
0

##
LibraryCrypto.ps1
Functions within this file can be used to perform
crypto operations.

Created: 11/3/2006
Author: Tyson Kopczynski
##
#---
New-RandomPassword
#---
Usage: Used to generate a random password.
$Size: The length of the password to generate.

function New-RandomPassword{
param ([int] $Size)

$Bytes = new-object System.Byte[] $Size
$Chars = “abcdefghijklmnopqrstuvwxyz”.ToCharArray()
$Chars += “ABCDEFGHIJKLMNOPQRSTUVWXYZ”.ToCharArray()
$Chars += “0123456789``~!@#$^*()-_=+[]{}`\|;:`’`”,./”.ToCharArray()

$Crypto =
new-object System.Security.Cryptography.RNGCryptoServiceProvider

Now you need to fill an array of bytes with a
cryptographically strong sequence of random nonzero values.
$Crypto.GetNonZeroBytes($Bytes)

foreach ($Byte in $Bytes){

For each Byte, perform a modulo operation
$Password += $Chars[$Byte % ($Chars.Length - 1)]
}

Finally, return the random password as a SecureString
ConvertTo-SecureString “$Password” -AsPlainText -Force
}

As mentioned previously, ChangeLocalAdminPassword.ps1 uses the New-RandomPassword
function from the LibraryCrypto.ps1 file to generate random passwords of a specified
length based on a predetermined set of allowed characters. To do this, the function uses
the .NET System.Security.Cryptography.RNGCryptoServiceProvider class as a crypto-
graphically strong random number generator.

A random number generator improves the strength of passwords, even those consisting of
both characters and numbers. The New-RandomPassword function uses the random number
generator to generate random characters for passwords. To do this, the function first takes
the specified length of the random password and creates a System.Byte array ($Bytes) of
the same length. It then defines a character array ($Chars) consisting of all possible char-
acters that can make up the random passwords.

Next, New-RandomPassword creates a random number generator ($Crypto) by using the
System.Security.Cryptography.RNGCryptoServiceProvider class. The GetNonZeroBytes()
method then uses $Crypto to populate the $Bytes array with a cryptographically strong
sequence of random nonzero values. For each byte in the $Bytes array, the function
performs a modulo operation (the remainder of dividing one number by another) to
determine which character from the $Chars array is added to the $Password variable. The
end result is a random password returned to the caller as a secure string.

The next code snippet contains the header for the ChangeLocalAdminPassword.ps1 script.
This header includes information about what the script does, when it was updated, and
the script’s author. Just after the header is the script’s parameter OUDN:

CHAPTER 10 Using PowerShell in the Real World250

##

ChangeLocalAdminPassword.ps1

Used to change the local admin passwords for machine

acounts in Active Directory.

Created: 11/2/2006

Author: Tyson Kopczynski

##

param([string] $OUDN)

Next, the script loads the Set-ChoiceMessage and New-PromptYesNo functions, as seen in
the following code snippet:

##

Functions

##

#---

Set-ChoiceMessage

In PowerShell, sometimes you’re prompted to make a choice before a command contin-
ues. For example, as you learned in Chapter 4, “Code Signing,” PowerShell might prompt
for confirmation before running a script that isn’t signed by a trusted entity, depending
on your execution policy setting. Or PowerShell prompts you for confirmation before
running a command when a cmdlet is used with the confirm switch parameter, as
shown in this example:

The ChangeLocalAdminPassword.ps1 Script 251

1
0

#---

Usage: Used to set yes and no choice options.

$No: The no message.

$Yes: The yes message.

function Set-ChoiceMessage{

param ($No, $Yes)

$N = ([System.Management.Automation.Host.ChoiceDescription]”&No”)

$N.HelpMessage = $No

$Y = ([System.Management.Automation.Host.ChoiceDescription]”&Yes”)

$Y.HelpMessage = $Yes

Return ($Y,$N)

}

#---

New-PromptYesNo

#---

Usage: Used to display a choice prompt.

$Caption: The prompt caption.

$Message: The prompt message.

$Choices: The object catagory.

function New-PromptYesNo{

param ($Caption, $Message,

[System.Management.Automation.Host.ChoiceDescription[]]$Choices)

$Host.UI.PromptForChoice($Caption, $Message, $Choices, 0)

}

With the Set-ChoiceMessage and New-PromptYesNo functions, you can build a menu of
Yes or No choices to display to users in the PowerShell console. The Set-ChoiceMessage
function creates a collection of choice objects and is used with the New-PromptYesNo func-
tion to generate the choice menu. To generate this menu, New-PromptYesNo uses the
PromptForChoice() method from the $host.UI object, which is just an implementation of
the System.Management.Automation.Host.PSHostUserInterface class.

In the following code snippet, variables that will be used later in the script are defined. In
addition, there are two library files that are dot sourced into the script’s scope. The first
file, LibraryGen.ps1, is a general library file that contains the script usage and Active
Directory functions that were used in Chapter 9, “PowerShell and Active Directory.” The
second file is the LibraryCrypto.ps1 library, which, as mentioned previously in this
section, contains the New-RandomPassword function:

CHAPTER 10 Using PowerShell in the Real World252

PS C:\> get-process | stop-process –confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "~e5d141.tmp (792)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

##

Main

##

#--------------------

Load Libraries

#--------------------

. .\LibraryGen.ps1

. .\LibraryCrypto.ps1

#--------------------

Set Config Vars

#--------------------

$ScriptName = “ChangeLocalAdminPassword.ps1”

$ScriptUsage = “Used to change the local admin passwords on machines.”

$ScriptCommand = “$ScriptName -OUDN value”

$ScriptParams = “OUDN = The distinguishedName of the OU where” `

+ “the machines are located.”

$ScriptExamples = “$ScriptName “”OU=Accounts,DC=companyabc,DC=com”””

$ErrorLogName = $ScriptName + “_Errors.log”

$Date = Date

After defining the script’s variables and the dot sourcing of any library files, the next step
is to check if the user needed any usage help or if the required OUDN parameter has been
defined. This step is shown in the next code snippet:

The ChangeLocalAdminPassword.ps1 Script 253

1
0

#--------------------

Verify Required Parameters

#--------------------

if ($args[0] -match ‘-(\?|(h|(help)))’){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (!$OUDN){

write-host

write-host “Please specify the OU machines are located in!” `

-Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

Next, the script creates a DataTable object. This is a new concept that uses an
.NET DataTable object (from the System.Data.DataTable class, part of the ADO.NET
architecture):

#--------------------

Define DataTable

#--------------------

$ServersTable = new-object System.Data.DataTable

$ServersTable.TableName = “Servers”

[Void]$ServersTable.Columns.Add(“Name”)

[Void]$ServersTable.Columns.Add(“Status”)

DataTable objects are the equivalent of a database table, except the table is located in
memory. Your scripts can use this table to hold data retrieved from other sources or data
you specify manually.

In this script, a DataTable is used to hold status information about the servers queried
from Active Directory. The script first creates a DataTable named $ServersTable by using

the New-Object cmdlet and System.Data.DataTable class. When you first create a
DataTable, it’s empty and lacks structure, so you must define the structure before you can
store data in it. For $ServersTable’s structure, the script uses the Add() method to add
Name and Status columns to its Columns collection. Later in the script, the Add() method
is used to add rows of data to $ServersTable’s Rows collection.

In the next code snippet, the Out-File cmdlet is used to create an error log and write
header information to it. Then the Get-ScriptHeader function is used to indicate to the
script operator that the automation portion of the script has started:

CHAPTER 10 Using PowerShell in the Real World254

#--------------------

Begin Script

#--------------------

Setup ErrorLog

$ScriptName + “ Ran on: “ + $Date | out-file $ErrorLogName

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

The next step is for the script to verify that there is a valid domain connection. To accom-
plish task, the script uses the Get-CurrentDomain function. If a valid domain connection
doesn’t exist, the script halts and returns the script status to the operator. If a connection
does exist, the script continues execution and writes the domain name to the console.
Then the script uses the Get-ADObject function to validate if the string in the $OUDN vari-
able is a valid distinguished name. If an object is returned from the function, then the
variable is valid; if no object is returned, the variable is considered invalid and the script
halts, as shown in the next code snippet:

.{

trap{write-host `t “[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

write-host “Domain Connection” -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain’s name

write-host `t $Domain.Name -Foregroundcolor Green

}

The following code snippet contains the logic for defining the password that will be used.
First, the script asks the user if a password should be generated or specified by the user. If
a password is to be generated, the script asks what the password length should be. Then
based on the defined length, a password is generated using the New-RandomPassword
function. If the user chooses to specify the password, then the script uses the Read-Host
cmdlet with the AsSecureString switch to collect the password from the user:

The ChangeLocalAdminPassword.ps1 Script 255

1
0

write-host “Checking OU Name” -NoNewLine

if (!(Get-ADObject “distinguishedName” $OUDN “organizationalUnit”)){

write-host `t “Is not valid!” -Foregroundcolor Red

write-host

Break

}

else{

write-host `t “[OK]” -Foregroundcolor Green

}

#--------------------

Get Password

#--------------------

$Choices = Set-ChoiceMessage “No” “Yes”

$Prompt = New-PromptYesNo “Question:” `

“Do you want me to generate a random password?” $Choices

while(!$Password){

trap{write-host “You need to input an integer!” `

-Foregroundcolor Red; Continue}

if ($Prompt -eq 0){

write-host

[int]$Length = read-host “Please enter the password length”

if ($Length -gt 0){

&{

$Temp = New-RandomPassword $Length

write-host

write-host “Your new random password is:” `

-Foregroundcolor White

Now that the script has the password that will be used, it must next get a list of machines
that will have their passwords changed. The next code snippet contains the code that
accomplishes this task. In this code, you will see usage of the DirectoryServices.
DirectorySearcher class to perform search for computer objects (servers) under the
defined OU. Then for each computer object that is returned from the search, the script
then pings the server and adds a row to the $ServersTable DataTable that contains the
server’s dNSHostName and its status:

CHAPTER 10 Using PowerShell in the Real World256

[System.Runtime.InteropServices.Marshal]::PtrToStringAuto(`

[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR(`

$Temp))

$Prompt = New-PromptYesNo “Question:” `

“Is this password ok?” $Choices

if ($Prompt -eq 0){

$Script:Password = $Temp

}

}

}

else{

write-host “Password length needs to be longer then 0!” `

-Foregroundcolor Red

}

}

else{

write-host

$Password = read-host “Then please enter a password” -AsSecureString

}

}

#--------------------

Get computers and status

#--------------------

write-host

write-host “Getting Server Info” -NoNewLine

&{

trap{write-host `t “[ERROR]” -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

The ChangeLocalAdminPassword.ps1 Script 257

1
0

$Root =

new-object DirectoryServices.DirectoryEntry “LDAP://$OUDN”

$Searcher = new-object DirectoryServices.DirectorySearcher

$Searcher.SearchRoot = $Root

$Searcher.PageSize = 1000

$SearchItem = “CN”

$SearchValue = “*”

$SearchClass = “Computer”

$SearchCat = “*”

$Searcher.Filter =

“(&($($SearchItem)=$($SearchValue))(objectClass=$(`

$SearchClass))(objectCategory=$($SearchCat)))”

$Script:Computers = $Searcher.FindAll()

}

write-host `t “[DONE]” -Foregroundcolor Green

write-host “Getting Status Info” -NoNewLine

$Computers | foreach-object -Begin {$i=0;} `

-Process {$Ping = new-object Net.NetworkInformation.Ping;

&{$dNSHostName = $_.GetDirectoryEntry().dNSHostName.ToString();

trap{“Ping [ERROR]: “ + $dNSHostName + “ $_” | out-file `

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($dNSHostName);

if ($Result.Status -eq “Success”){ `

[Void]$ServersTable.Rows.Add($dNSHostName, “Online”)} `

else{[Void]$ServersTable.Rows.Add($dNSHostName, “Offline”)};

$i = $i+1;

write-progress -Activity “Pinging Servers - $($dNSHostName)” `

-Status “Progress:” `

-PercentComplete ($i / $Computers.Count * 100)}}

write-host `t “[DONE]” -Foregroundcolor Green

Write status info to ErrorLog

$ServersTable | out-file $ErrorLogName –Append

The next task is to change the passwords on all of the online servers. First, the script
converts the secure string in the $Password variable back to a regular string. Next, the
script defines the $OnlineServers variable with all the server objects that have an online
status using the DataTable Select() method. Then, the script uses WMI to connect to
the server, figure out which account is the Administrator account, and then set its pass-
word to the string that is in the $Password variable:

CHAPTER 10 Using PowerShell in the Real World258

write-host “Changing Passwords” -NoNewLine

$Password = [System.Runtime.InteropServices.Marshal]::PtrToStringAuto(`

[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR(`

$Password))

$OnlineServers = $ServersTable.Select(“Status = ‘Online’”)

foreach ($Server in $OnlineServers) {

&{

write-progress -Activity “Getting Users - $($Server.Name)” `

-Status “Stand by...”

$Users = get-wmiobject -ErrorVariable Err -ErrorAction `

SilentlyContinue Win32_UserAccount -Computer $Server.Name

write-progress -Activity “Getting Users - $($Server.Name)” `

-Status “Done” -completed $True

if ($Err.Count -ne 0){

“Getting Users [ERROR]: “ + $Server.Name + “ “ + $Err | out-file `

$ErrorLogName -Append

}

else{

foreach ($User in $Users){

if ($User.SID.EndsWith(“-500”) -eq $True){

write-progress -Activity `

“Changing Password - `$($User.Name)” `

-Status “Stand by...”

trap{“Change Password [ERROR]: “ + `

$Server.Name + “ “ + $_ | out-file `

$ErrorLogName -Append; Continue}

Summary
In this chapter, you were able to review two PowerShell scripts that were developed to
meet some very demanding automation needs. In the first script, you learned that
PowerShell was able to act outside of its normal role as an automation tool by filling a
critical security need as a Windows shell replacement. The second script gave you further
insight into just how powerful of an automation tool PowerShell can be. Both scripts only
scratched the surface as to what automation tasks can be tackled using PowerShell.

As it has been stressed repeatedly throughout this book, the limits to what you can
accomplish with PowerShell are boundless. This chapter should only serve as a stepping
stone in a continuing quest for exploring PowerShell and what it can do.

Summary 259

1
0

$WinNTUser =

new-object System.DirectoryServices.DirectoryEntry(`

“WinNT://” + $Server.Name + “/” + $User.Name)

$WinNTUser.SetPassword($Password)

$Null = $WinNTUser.SetInfo

write-progress -Activity `

“Changing Password - $($User.Name)” `

-Status “Done” -completed $True

}

}

}

}

}

write-host `t “[DONE]” -Foregroundcolor Green

write-host

write-host “Script is now DONE!” -Foregroundcolor Green

write-host “Check the $ErrorLogName for errors.” -Foregroundcolor Yellow

This page intentionally left blank This page intentionally left blank

IN THIS CHAPTER

. Introduction

. The Exchange Management Shell
(EMS)

. The GetDatabaseSizeReport.ps1
Script

. The GetEvent1221Info.ps1
Script

. The ProvisionExchangeUsers.ps1
Script

CHAPTER 11

Using PowerShell to
Manage Exchange

Introduction
This chapter explains how to use PowerShell to manage an
Exchange Server 2007 environment. Exchange Server 2007
uses PowerShell to perform management and automation
tasks through the Exchange Management Shell (EMS). In
addition, the concept of PowerShell snap-ins is explained,
and you learn that the EMS is just a PowerShell snap-in.
Last, you take a look at three PowerShell scripts for manag-
ing an Exchange Server 2007 environment and see how
they can be used to meet your automation needs.

The Exchange Management
Shell (EMS)
For years, Exchange administrators have had two choices
for performing repetitive tasks: Do them manually by using
the graphical interface, or write scripts in complicated and
time-consuming programming languages. Although these
programming languages could be used to perform many
routine tasks in an Exchange environment, they weren’t
developed specifically with that purpose in mind. Hence,
even the simplest task could take hundreds of lines of code.

Over time, the inability to automate tasks easily has proved
to be one of the most frustrating aspects of managing an
Exchange environment. In fact, as pointed out throughout
this book, Windows automation in general wasn’t suffi-
cient because of Microsoft’s reliance on GUIs and little
support for CLIs. This frustration became one of the

motivations for the PowerShell team, led by Jeffrey Snover, to develop a CLI shell inter-
face that enables administrators to do everything from the command line.

Around that time, the Exchange product team was designing the specifications for the
next version of Exchange (E12, which became Exchange Server 2007). Initially, it seemed
the team would develop yet another limited Microsoft Management Console (MMC) GUI
as the Exchange management interface. However, the Exchange team decided to take a
different course by embracing the concept of PowerShell-based management.

The result is that in Exchange Server 2007, configuration and administration are done
with two new administrative tools: the EMS and the Exchange Management Console
(EMC). Both utilities rely on PowerShell to access and modify information and configura-
tion settings in an Exchange Server 2007 environment.

NOTE

Exchange Server 2007 is the first Microsoft product to use PowerShell exclusively to
drive its management interfaces.

The EMS is a command-line management interface for performing server administration
and configuration. Because it’s built on a PowerShell platform, it can connect to the .NET
runtime (also known as the Common Language Runtime, or CLR). So tasks that previ-
ously had to be done manually in the management application can now be scripted,
giving administrators more flexibility for repetitive tasks. Furthermore, administrators can
manage every aspect of Exchange Server 2007, including creating and managing e-mail
accounts, configuring Simple Mail Transport Protocol (SMTP) connectors and transport
agents, and setting properties for database stores. Every management task in the Exchange
environment can now be accomplished from the command line. In addition, the EMS
can be used to check settings, create reports, provide information on the health of
Exchange servers, and, best of all, automate tasks that need to be done frequently.

The EMC is an MMC 3.0 GUI utility for viewing and modifying the configuration of
Exchange Server 2007 organizations. Although similar to the Exchange System Manager
(ESM) in previous Exchange versions, the EMC’s interface has been redesigned to be more
organized and easier to learn. The EMC is limited in the scope of modifications adminis-
trators can make, so some configuration settings can be accessed only by using the EMS.

The EMS and EMC rely on PowerShell to accomplish management tasks. The EMC is
simply a graphical interface that calls the EMS to perform tasks, and the EMS is just a
snap-in for PowerShell. Therefore, no matter which utility administrators use to create a
report or modify a setting, they’re actually using PowerShell.

It’s Just a Snap-in
A snap-in is nothing more than a collection of one or more cmdlets compiled into a DLL,
which is used as a way to extend PowerShell’s functionality. Typically, extending func-
tionality is done to manage an application with PowerShell and can be accomplished
easily by using snap-ins, much as you add snap-ins to the MMC to increase functionality.

CHAPTER 11 Using PowerShell to Manage Exchange262

Like an MMC snap-in, a PowerShell snap-in must be loaded into your current PowerShell
session before it can be used. For example, say you just finished creating a PowerShell
snap-in in C#. You have compiled that custom snap-in into MyFirstSnapin.dll, and now
you want to use it in PowerShell. However, you must register it with a PowerShell installa-
tion first by using the .NET Framework Installer (installutil.exe), as shown in this
example:

The Exchange Management Shell (EMS) 263

1
1

PS C:\Dev> set-alias IntUtil
$Env:windir\Microsoft.NET\Framework\v2.0.50727\installutil.exe
PS C:\Dev> IntUtil MyFirstSnapin.dll
Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.
Running a transacted installation.
...
The transacted install has completed.
PS C:\Dev>

For a 64-bit version of Windows, this is the path for the .NET Framework Installer:

PS C:\Dev> set-alias IntUtil $Env:windir\Microsoft.NET\Framework64\
v2.0.50727\installutil.exe

After the snap-in has been registered, you might want to verify that it’s loaded by using
the Get-PSSnapin cmdlet with the registered switch parameter, as shown here:

PS C:\Dev> get-pssnapin –registered

Name : MyFirstSnapin
PSVersion : 1.0
Description : Used to take over the world.

PS C:\Dev>

NOTE

The list Get-PSSnapin returns consists of only the snap-ins registered with a
PowerShell installation. This list doesn’t contain any snap-ins included with the base
PowerShell installation.

After verifying the snap-in registration, you load the snap-in into the current PowerShell
session by using the Add-PSSnapin cmdlet, as shown in this example:

CHAPTER 11 Using PowerShell to Manage Exchange264

PS C:\Dev> add-pssnapin MyFirstSnapin
PS C:\Dev>

Now that the snap-in has been loaded, you use the Get-PSSnapin cmdlet to confirm its
availability for the current PowerShell session, as shown here:

PS C:\Dev> get-pssnapin

Name : Microsoft.PowerShell.Core
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains Windows PowerShell

management cmdlets used to manage components of Windows PowerShell.

Name : Microsoft.PowerShell.Host
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets used by the

Windows PowerShell host.

Name : Microsoft.PowerShell.Management
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains management cmdlets used

to manage Windows components.

Name : Microsoft.PowerShell.Security
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets to manage Windows

PowerShell security.

Name : Microsoft.PowerShell.Utility
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains utility cmdlets used to

manipulate data.

Name : MyFirstSnapin
PSVersion : 1.0
Description : Used to take over the world.

PS C:\Dev>

You can now use the custom MyFirstSnapin in your current PowerShell session. However,
if you close that session and open a new one, the snap-in must be loaded again. Like
aliases, functions, and variables, a snap-in, by default, is valid only for the current

PowerShell session. To make a snap-in persistent across sessions, it must be loaded each
time a PowerShell session is started.

As you learned in Chapter 2, “PowerShell Basics,” one way to make aliases, functions, and
variables persistent is to use a PowerShell profile. You can also use a profile to load a snap-
in into your PowerShell sessions. Another method is the PowerShell console file, which is a
configuration file with the .psc1 extension, consisting of XML information listing snap-ins
that are loaded when the PowerShell session starts. To create a console file, you use the
Export-Console cmdlet, as shown in this example that creates the MyConsole.psc1 file:

The Exchange Management Shell (EMS) 265

1
1

PS C:\Dev> export-console MyConsole
PS C:\Dev>

The following code snippet shows an example of a PowerShell console file:

<?xml version="1.0" encoding="utf-8"?>

<PSConsoleFile ConsoleSchemaVersion="1.0">

<PSVersion>1.0</PSVersion>

<PSSnapIns>

<PSSnapIn Name="MyFirstSnapin" />

</PSSnapIns>

</PSConsoleFile>

PowerShell can then use this XML information to load snap-ins based on a previous
PowerShell console configuration. To use a console file to configure a PowerShell session
at startup, you use the PSConsoleFile parameter with PowerShell.exe, as shown here:

C:\>powershell.exe –PSConsoleFile C:\Dev\MyConsole.psc1

Naturally, you don’t want to type this command every time you use PowerShell. So if
you’re planning to use a PowerShell console file, you should create a shortcut for starting
your custom configuration. This method is similar to opening the EMS from the Windows
Start menu.

Because the EMS is just a PowerShell snap-in, accessing EMS cmdlets simply requires
loading the EMS snap-in into your PowerShell session, as shown here:

PS C:\> add-pssnapin Microsoft.Exchange.Management.PowerShell.Admin
PS C:\>

However, there are some differences in loading the EMS snap-in and starting the EMS
with the Windows Start menu shortcut. If you just load the snap-in, you don’t get the
customized Exchange administration console. Your PowerShell session won’t look and act
like the EMS because the snap-in loads only the cmdlets for managing the Exchange envi-
ronment. To make your PowerShell session resemble the EMS, you need to run the same
configuration script that the Start menu shortcut runs to start the EMS. This script,
Exchange.ps1, is in the default Exchange Server 2007 bin directory: C:\Program
Files\Microsoft\Exchange Server\Bin.

The GetDatabaseSizeReport.ps1 Script
The first Exchange Server 2007 script you examine in this chapter is the
GetDatabaseSizeReport.ps1 script, which produces a report on the size of a mailbox
databases in an Exchange organization. The report contains the following information:

. The mailbox server name

. The full database name, including the storage group name

. The drive where the database is located

. The free space on the drive in gigabytes

. The database size in gigabytes

Here’s an example of the report GetDatabaseSizeReport.ps1 produces:

CHAPTER 11 Using PowerShell to Manage Exchange266

Server,Database,Drive,FreeSpace,Size

SFEX01,SG1\DB1,C:,34.67,40.453

SFEX02,SG1\DB1,F:,40.56,20.232

SFEX02,SG1\DB2,F:,40.56,30.2144

SFEX02,SG2\DB1,F:,40.56,45.333

Any information about your network environment is helpful. However, when you’re
using Exchange, an understanding of mailbox database sizes, their growth, free space on
the hosting drive, and an overall picture of how mailbox databases are functioning in a
network environment can help you prevent potential problems.

This script was developed for companyabc.com, a small manufacturing company with a
network consisting of several hundred users and two Exchange servers. Because of budget
constraints, the IT department is made up of only one person. The limited budget has also
prevented companyabc.com from purchasing and installing monitoring and reporting soft-
ware for IT systems. As a result, the IT employee has only manual methods for ensuring the
systems’ operational status and often doesn’t have time to do any proactive monitoring.

As a result, the Exchange mailbox databases have grown to the point that offline mainte-
nance can no longer be done, and database disks tend to run out of space. After several

near disasters, companyabc.com’s management has asked the IT employee to find a way
to improve monitoring of the Exchange databases. Needing a quick, flexible, and cost-
effective solution, the IT employee turned to scripting and requested the development of
the GetDatabaseSizeReport.ps1 script.

A working copy is in the Scripts\Chapter 11\GetDatabaseSizeReport folder and is
downloadable at www.samspublishing.com. Running this script doesn’t require any
parameters be defined. However, an optional parameter, ExportFile, should have its
argument set to the name of the CSV file where you want to export report data. Here’s
the command to run the GetDatabaseSizeReport.ps1 script:

The GetDatabaseSizeReport.ps1 Script 267

1
1

PS C:\Scripts> .\GetDatabaseSizeReport.ps1

Figures 11.1 and 11.2 shows the execution of the GetDatabaseSizeReport.ps1 script.

FIGURE 11.1 The GetDatabaseSizeReport.ps1 script being executed

FIGURE 11.2 The GetDatabaseSizeReport.ps1 script after being executed

www.samspublishing.com

NOTE

You might notice a difference in prompts in the screenshots and some of the source
documentation because the screenshots were taken when Exchange 2007 was still in
beta. At the time, the EMS was using an older version of PowerShell that had the old
Microsoft Shell MSH-based prompt.

The GetDatabaseSizeReport.ps1 script performs the following sequence of actions:

1. The script creates two DataTable objects: $ServersTable, used to store status infor-
mation for Exchange mailbox servers, and $ReportTable, used to store the Exchange
database size report.

2. The script creates an error log named GetDatabaseSizeReport_Errors.log by using
the Out-File cmdlet. This error log gives users detailed error information.

3. The script uses the Get-MailboxServer cmdlet to get a list of all Exchange mailbox
servers, which is then populated into the $MailboxServers variable.

4. The script uses the System.Net.NetworkInformation.Ping class to ping each server
in the $MailboxServers object collection. If a server responds, a new row is created
in $ServersTable consisting of the server’s name and its status as “Online.” If a
server doesn’t respond, a new row is created in $ServersTable with the server’s
status set to “Offline.”

5. The listing of servers and their status information is sent to the script’s error log for
future reference by using the Out-File cmdlet.

6. For each server with an “Online” status in $ServersTable, the script does the
following:

. The Get-MailboxDatabase cmdlet is used to get a listing of all mailbox data-
bases on the server. Each mailbox database’s Name, StorageGroupName, and
EdbFilePath are populated into the $Databases variable.

. For each mailbox database in the $Databases object collection, the script uses
the Get-WmiObject cmdlet to collect information about the database size and
free drive space. The script then adds a row to the $ReportTable containing
the mailbox server name ($Server.Name), database name ($DBName), drive letter
of the database’s location ($DBDriveName), free space ($DBDriveFreeSpace), and
database size ($DBSize).

7. The script exports all data from the $ReportTable by using the Export-DataTable
function.

NOTE

This script and the remaining scripts in this chapter can be run only by using a
PowerShell session that has the Microsoft.Exchange.Management.PowerShell.
Admin snap-in loaded.

CHAPTER 11 Using PowerShell to Manage Exchange268

The first code snippet contains the header for the GetDatabaseSizeReport.ps1 script. This
header includes information about what the script does, when it was updated, and the
script’s author. Just after the header is the script’s only parameter ExportFile:

The GetDatabaseSizeReport.ps1 Script 269

1
1

##

GetDatabaseSizeReport.ps1

Used to generate an Exchange database size report.

Created: 10/26/2006

Author: Tyson Kopczynski

##

param([string] $ExportFile)

For the GetDatabaseSizeReport.ps1 script, only one function (Export-DataTable) is
loaded as shown in the next code snippet:

##

Functions

##

#---

Export-DataTable

#---

Usage: Used to export a DataSet to a CSV file.

$Data: A DataSet object.

$FileName: The name of the export CSV file.

function Export-DataTable{

param ($Data, $FileName)

$Null =

[System.Reflection.Assembly]::LoadWithPartialName(`

"System.Windows.Forms")

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

if ($FileName -eq ""){

$exFileName = new-object System.Windows.Forms.saveFileDialog

$exFileName.DefaultExt = "csv"

$exFileName.Filter = "CSV (Comma delimited)(*.csv)|*.csv"

$exFileName.ShowDialog()

$FileName = $exFileName.FileName

}

To perform the data export, the Export-DataTable function uses the .NET System.IO.
StreamWriter class to create an object based on the .NET TextWriter class. The resulting
TextWriter object ($LogFile) can be used to write an object to a string, write strings to a
file, or serialize XML. In this script, $LogFile is used to dump the DataTable’s contents
into the CSV export file (which is created along with $LogFile). To perform this task, the
Export-DataTable function writes DataTable’s column names, separated with a comma
(,) delimiter, to the CSV export file. Then the function loops through each value in
DataTable’s rows and writes these values to the CSV export file, separated with a comma
(,) delimiter.

If Export-DataTable is called and a CSV export filename isn’t specified, this function
makes use of a .NET System.Windows.Forms.saveFileDialog class to construct a Save As
dialog box for collecting the export file’s name and location (see Figure 11.3).

CHAPTER 11 Using PowerShell to Manage Exchange270

if ($FileName -ne ""){

$LogFile = new-object System.IO.StreamWriter($FileName, $False)

for ($i=0; $i -le $Data.Columns.Count-1; $i++){

$LogFile.Write($Data.Columns[$i].ColumnName)

if ($i -lt $Data.Columns.Count-1){

$LogFile.Write(",")

}

}

$LogFile.WriteLine()

foreach ($Row in $Data.Rows){

for ($i=0; $i -le $Data.Columns.Count-1; $i++){

$LogFile.Write($Row[$i].ToString())

if ($i -lt $Data.Columns.Count-1){

$LogFile.Write(",")

}

}

$LogFile.WriteLine()

}

$LogFile.Close()

}

}

FIGURE 11.3 Windows Forms Save as dialog box

This example is only one of many that show how PowerShell can use .NET-based
Windows Forms to collect or display data.

In the next code snippet, variables that will be used later in the script are defined. In
addition, the library file LibraryGen.ps1, which contains the script usage functions, is
being dot sourced:

The GetDatabaseSizeReport.ps1 Script 271

1
1

##

Main

##

#--------------------

Load Libraries

#--------------------

. .\LibraryGen.ps1

#--------------------

Set Config Vars

#--------------------

$ScriptName = "GetDatabaseSizeReport.ps1"

$ScriptUsage = "Used to generate an Exchange database size report."

$ScriptCommand = "$ScriptName -ExportFile value"

$ScriptParams = "ExportFile = The export CSV file path/filename."

$ScriptExamples = "$ScriptName ""report.csv"""

$ErrorLogName = "GetDatabaseSizeReport.log"

$Date = Date

Next, the script checks to see if the user needed any usage help, as shown in the following
code snippet:

CHAPTER 11 Using PowerShell to Manage Exchange272

#--------------------

Verify Required Parameters

#--------------------

if ($args[0] -match ‘-(\?|(h|(help)))’){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

Then in the next code snippet, the two DataTable objects are created. The first DataTable
is the $ServersTable, which will store server information, and the second DataTable is
the $ReportTable, which will store the report information:

#--------------------

Define DataTables

#--------------------

$ServersTable = new-object System.Data.DataTable

$ServersTable.TableName = "Servers"

[Void]$ServersTable.Columns.Add("Name")

[Void]$ServersTable.Columns.Add("Status")

$ReportTable = new-object System.Data.DataTable

$ReportTable.TableName = "Servers"

[Void]$ReportTable.Columns.Add("Server")

[Void]$ReportTable.Columns.Add("Database")

[Void]$ReportTable.Columns.Add("Drive")

[Void]$ReportTable.Columns.Add("FreeSpace")

[Void]$ReportTable.Columns.Add("Size")

Next, the Out-File cmdlet is used to create an error log and write header information to
it. Then the Get-ScriptHeader function is used to indicate to the script operator that the
automation portion of the script has started:

#--------------------

Begin Script

#--------------------

Setup ErrorLog

After displaying the script header to the user, the script’s next task is to get a list of
mailbox servers using the Get-MailboxServer cmdlet. Then for each server object in
$MailboxServers variable, the script pings that server to determine its status. During this
task, both the resulting status and the server’s name are written to a new row in the
$ServersTable DataTable, as shown in the next code snippet:

The GetDatabaseSizeReport.ps1 Script 273

1
1

$ScriptName + " Ran on: " + $Date | out-file $ErrorLogName

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

#--------------------

Get Servers and Status

#--------------------

write-host "Getting Mailbox Servers" -NoNewLine

$MailboxServers = get-mailboxserver

write-host `t "[DONE]" -Foregroundcolor Green

write-host "Getting Status Info" -NoNewLine

$MailboxServers | foreach-object -Begin {$i=0;} `

-Process {&{$Ping = new-object Net.NetworkInformation.Ping;

$MBServerName = $_.Name;

trap{"Ping [ERROR]: " + $MBServerName + " $_" | out-file `

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($MBServerName);

if ($Result.Status -eq "Success"){ `

[Void]$ServersTable.Rows.Add($MBServerName, "Online")} `

else{[Void]$ServersTable.Rows.Add($MBServerName, "Offline")};

$i = $i+1;

write-progress -Activity "Pinging Servers - $($MBServerName)" `

-Status "Progress:" `

-PercentComplete ($i / $MailboxServers.Count * 100)}}

write-host `t "[DONE]" -Foregroundcolor Green

Write status info to ErrorLog

$ServersTable | out-file $ErrorLogName –Append

The next task, as shown in the next code snippet, is to generate the final report. To do
this, the script uses the Get-MailboxDatabase cmdlet to get the EdbFilePath for each
Exchange server that is online. Then, for each mailbox database, the script uses WMI to
collect the database size and free space for the drive that the database is located on. After
collecting and formatting report information, the script then adds a new row to the
$ReportTable DataTable that contains the database information, its size, and the drive
free space:

CHAPTER 11 Using PowerShell to Manage Exchange274

#--------------------

Get Report Info

#--------------------

write-host "Getting Report Info" -NoNewLine

$OnlineServers = $ServersTable.Select("Status = ‘Online’")

foreach ($Server in $OnlineServers) {

&{

trap{"Make Report [Error]: " + $Server.Name + " $_" | `

out-file $ErrorLogName -Append; Continue}

write-progress -Activity "Getting Database Info - $($Server.Name)" `

-Status "Stand by..."

$Databases = get-mailboxdatabase -Server $Server.Name | `

select Name, StorageGroupName, EdbFilePath

foreach ($Database in $Databases){

&{

write-progress `

-Activity "Getting Drive Info - $($Server.Name)" `

-Status "Stand by..."

$DBDriveName = $Database.EdbFilePath.DriveName

$DBDrive = `

get-wmiobject Win32_PerfRawData_PerfDisk_LogicalDisk `

-Computer $Server.Name -Filter "Name = ‘$DBDriveName’"

write-progress -Activity `

"Getting Drive Size Info - $($Server.Name)" `

-Status "Stand by..."

Needed to replace \ with \\

$DBPath = $Database.EdbFilePath.PathName.Replace("\","\\")

Last, the script writes the report to the PowerShell console using the Format-Table cmdlet
and then exports the data to a CSV file using the Export-DataTable function.

The GetEvent1221Info.ps1 Script 275

1
1

$DBFile = get-wmiobject CIM_DataFile -Computer $Server.Name `

-Filter "Name = ‘$DBPath’"

$DBName = $Database.StorageGroupName + "\" + $Database.Name

Needed to convert from MB to GB

$DBDriveFreeSpace = $DBDrive.FreeMegabytes / 1000

Needed to convert Bytes to GB

$DBSize = $DBFile.FileSize / 1073741824

[Void]$ReportTable.Rows.Add($Server.Name, $DBName, `

$DBDriveName, $DBDriveFreeSpace, $DBSize)

}

}

write-progress -Activity `

"Getting Database Info - $($Server.Name)" `

-Status "Done" -completed $True

}

}

write-host `t "[DONE]" -Foregroundcolor Green

$ReportTable | format-table -groupBy Server Database, Drive, `

FreeSpace, Size -autosize

$Null = Export-DataTable $ReportTable $ExportFile

The GetEvent1221Info.ps1 Script
Administrators can use the GetEvent1221Info.ps1 script to search the Application event
logs of Exchange Server 2007 mailbox servers and generate a report containing Event ID
1221 messages. Exchange administrators can use these messages to determine the amount
of whitespace present in a database over a specified time span (number of days before the
current day). Based on information gathered from Event ID 1221 messages, the report
contains the following:

. The mailbox server name

. The date and time the event was written to the Application log

. The full database name, including the storage group name

. The amount of whitespace in megabytes

Here’s an example of the report GetEvent1221Info.ps1 produces:

CHAPTER 11 Using PowerShell to Manage Exchange276

Server,TimeWritten,Database,MB

SFEX02,10/27/2006 1:00:02 AM,SG1\DB1,500

SFEX02,10/27/2006 1:00:06 AM,SG2\PF1,700

SFEX02,10/27/2006 2:00:00 AM,SG1\DB1,500

SFEX02,10/27/2006 2:00:01 AM,SG2\PF1,700

SFEX02,10/27/2006 3:00:00 AM,SG1\DB1,500

SFEX02,10/27/2006 3:00:32 AM,SG2\PF1,700

SFEX02,10/27/2006 4:00:00 AM,SG1\DB1,500

SFEX02,10/27/2006 4:00:00 AM,SG2\PF1,700

SFEX01,10/27/2006 1:00:04 AM,SG1\DB2,200

SFEX01,10/27/2006 1:00:04 AM,SG1\DB1,100

SFEX01,10/27/2006 2:00:00 AM,SG1\DB1,200

SFEX01,10/27/2006 2:00:00 AM,SG1\DB2,100

SFEX01,10/27/2006 3:15:00 AM,SG1\DB1,100

SFEX01,10/27/2006 3:15:00 AM,SG1\DB2,200

SFEX01,10/27/2006 4:00:00 AM,SG1\DB1,200

SFEX01,10/27/2006 4:00:00 AM,SG1\DB2,100

This script was developed for companyabc.com, a marketing firm of 50 users that has very
large (4GB and up) Exchange mailboxes. It produces marketing packages consisting of
digital images, which result in an average package size of more than 20MB. companyabc.
com’s employees are scattered among many home offices and remote locations, so they
usually e-mail marketing packages to each other instead of posting them to a shared
location.

Because employees have been using their mailboxes as online file systems, mailbox sizes
have grown rapidly. Realizing that mailboxes of this size would be costly and difficult to
maintain, companyabc.com’s Exchange administrator has requested that marketing
content be saved locally to users’ hard drives and then deleted from their mailboxes. This
practice has kept the Exchange databases from growing too quickly; however, the high
deletion rate of large e-mail messages has created another problem: large areas of white-
space in Exchange databases.

The amount of whitespace is important because after an Exchange database grows, its size
can’t be decreased until the administrator does an offline defragmentation. For example, a

database has grown to 12GB, but users have deleted 3GB of messages. After an online
defragmentation, Event ID 1221 logs report 3GB of whitespace. New messages written to
the database use this whitespace, and the database doesn’t grow until that whitespace is
exhausted.

The database still takes up 12GB on the hard drive, even though it contains only 9GB of
data. A larger than necessary database can increase the time needed for backup and
restore jobs. By reviewing Event ID 1221 messages, administrators can determine whether
an offline defragmentation is needed to shrink the database in an effort to improve
overall performance. Furthermore, with periodic review of Event ID 1221 logs, administra-
tors can track a database’s average whitespace amount, which helps determine the growth
patterns of actual data in a database. This information can be helpful in deciding when
additional space needs to be allocated for a database.

With no budget available to purchase a suite of Exchange tools, companyabc.com
requested the development of a script for monitoring the amount of whitespace in
Exchange databases. The resulting script is GetEvent1221Info.ps1.

A working copy is in the Scripts\Chapter 11\GetEvent1221Info folder and is download-
able at www.samspublishing.com. Running this script requires defining one parameter.
The Days parameter should have its argument set to the time period (in number of days)
for querying Event ID 1221 messages from mailbox servers. An optional parameter,
ExportFile, should have its argument set to the name of the CSV file where you want
to export report data. Here’s the command to run the GetEvent1221Info.ps1 script:

The GetEvent1221Info.ps1 Script 277

1
1

PS C:\Scripts> .\GetEvent1221Info.ps1 5

Figures 11.4 and 11.5 shows the execution of the GetEvent1221Info.ps1 script.

FIGURE 11.4 The GetEvent1221Info.ps1 script being executed

www.samspublishing.com

FIGURE 11.5 The GetEvent1221Info.ps1 script after being executed

The GetEvent1221Info.ps1 script performs the following sequence of actions:

1. The script creates two DataTable objects: $ServersTable, used to store status infor-
mation for Exchange mailbox servers, and $EventsTable, used to store the Event ID
1221 report.

2. The script creates an error log named GetEvent1221Info_Errors.log by using the
Out-File cmdlet. This error log gives users detailed error information.

3. The script uses the Get-MailboxServer cmdlet to get a list of all Exchange mailbox
servers, which is then populated to the $MailboxServers variable.

4. The script uses the System.Net.NetworkInformation.Ping class to ping each server
in the $MailboxServers object collection. If a server replies, a new row is added to
$ServersTable consisting of the server’s name and its “Online” status. If a server
doesn’t reply, a new row is added with the server’s status set to “Offline”.

5. The listing of servers and their status information is sent to the script’s error log for
future reference by using the Out-File cmdlet.

6. For each server with an “Online” status in $ServersTable, the script does the
following:

. The Get-RemoteEventLog function is used to create an object ($Events) bound
to the server’s Application log. To create the object, the function uses the .NET
System.Diagnostics.Eventlog class, which allows an application or script to
interact with a machine’s event log.

. Next, the script uses the Select-Object cmdlet to select all the 1221 events
from the $Events object’s Entries property that fall within the specified
period ($Days). The resulting collection of events is populated to the
$1221Events variable.

. For each $1221Event in the $1221Events object collection, the script then uses
the get_timewritten() method of $1221Event to populate the $TimeWritten

CHAPTER 11 Using PowerShell to Manage Exchange278

variable with the time the event was written. Next, a regular expression is used
to strip the database’s free space ($MB) and name ($Database) from the event
message.

. A row is added to $EventsTable containing the server’s name ($Server.Name),
time the event was written ($TimeWritten), database name ($Database), and
free space in megabytes ($MB).

7. The script exports all data from $EventsTable by using the Export-DataTable
function.

The first code snippet contains the header for the GetEvent1221Info.ps1 script. This
header includes information about what the script does, when it was updated, and the
script’s author. Just after the header are the script’s parameters:

The GetEvent1221Info.ps1 Script 279

1
1

##

GetEvent1221Info.ps1

Used to consolidate 1221 events from mailbox servers.

Created: 10/26/2006

Author: Tyson Kopczynski

##

param([int] $Days, [string] $ExportFile)

Next, the Get-RemoteEventLog function is loaded. This function is used to collect remote
EventLog information from a machine using the System.Diagnostics.Eventlog class.
Then the Export-DataTable function is loaded. This function was discussed in the previ-
ous section:

##

Functions

##

#---

Get-RemoteEventLog

#---

Usage: Used to collect remote EventLog information from a machine.

$Machine: The name of the machine. ("MyServer")

$Log: The name of the EventLog. ("Application")

function Get-RemoteEventLog{

param ($Machine, $Log)

trap{Continue}

CHAPTER 11 Using PowerShell to Manage Exchange280

new-object System.Diagnostics.Eventlog $Log, $Machine

}

#---

Export-DataTable

#---

Usage: Used to export a DataSet to a CSV file.

$Data: A DataSet object.

$FileName: The name of the export CSV file.

function Export-DataTable{

param ($Data, $FileName)

$Null = `

[System.Reflection.Assembly]::LoadWithPartialName(`

"System.Windows.Forms")

trap{write-host "[ERROR] $_" -Foregroundcolor Red; Continue}

if ($FileName -eq ""){

$exFileName = new-object System.Windows.Forms.saveFileDialog

$exFileName.DefaultExt = "csv"

$exFileName.Filter = "CSV (Comma delimited)(*.csv)|*.csv"

$exFileName.ShowDialog()

$FileName = $exFileName.FileName

}

if ($FileName -ne ""){

$LogFile = new-object System.IO.StreamWriter($FileName, $False)

for ($i=0; $i -le $Data.Columns.Count-1; $i++){

$LogFile.Write($Data.Columns[$i].ColumnName)

if ($i -lt $Data.Columns.Count-1){

$LogFile.Write(",")

}

}

$LogFile.WriteLine()

foreach ($Row in $Data.Rows){

for ($i=0; $i -le $Data.Columns.Count-1; $i++){

$LogFile.Write($Row[$i].ToString())

In the next code snippet, variables that will be used later in the script are defined. In
addition, the library file LibraryGen.ps1, which contains the script usage functions, is
being dot sourced:

The GetEvent1221Info.ps1 Script 281

1
1

if ($i -lt $Data.Columns.Count-1){

$LogFile.Write(",")

}

}

$LogFile.WriteLine()

}

$LogFile.Close()

}

}

##

Main

##

#--------------------

Load Libraries

#--------------------

. .\LibraryGen.ps1

#--------------------

Set Config Vars

#--------------------

$ScriptName = "GetEvent1221Info.ps1"

$ScriptUsage = "Used to consolidate 1221 events from mailbox servers."

$ScriptCommand = "$ScriptName -Days value -ExportFile value"

$ScriptParams = "Days = The number of days to filter events by.", `

"ExportFile = The export CSV file path/filename."

$ScriptExamples = "$ScriptName 5 ""report.csv"""

$ErrorLogName = "GetEvent1221Info.log"

$Date = Date

Next, the script checks to see if the script user needed any usage help. If no help is needed
the script then checks to see if the Days parameter has been defined. If this parameter has
not been defined, the script then informs the script operator that the parameter is
required and shows the script usage information, as shown in the following code snippet:

Then in the next code snippet, the two DataTable objects are created. The first DataTable
is the $ServersTable, which will store server information, and the second DataTable is
the $EventsTable, which will store the report information:

CHAPTER 11 Using PowerShell to Manage Exchange282

#--------------------

Verify Required Parameters

#--------------------

if ($args[0] -match ‘-(\?|(h|(help)))’){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (!$Days){

write-host

write-host "Please specify the number of days!" -Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

#--------------------

Define DataSets

#--------------------

$ServersTable = new-object System.Data.DataTable

$ServersTable.TableName = "Servers"

[Void]$ServersTable.Columns.Add("Name")

[Void]$ServersTable.Columns.Add("Status")

$EventsTable = new-object System.Data.DataTable

$EventsTable.TableName = "Servers"

[Void]$EventsTable.Columns.Add("Server")

[Void]$EventsTable.Columns.Add("TimeWritten",[DateTime])

[Void]$EventsTable.Columns.Add("Database")

[Void]$EventsTable.Columns.Add("MB")

Next, the Out-File cmdlet is used to create an error log and write header information to
it. Then the Get-ScriptHeader function is used to indicate to the script operator that the
automation portion of the script has started:

The next task is to get a list of mailbox servers using the Get-MailboxServer cmdlet. Then
for each server object in $MailboxServers variable, the script pings that server to deter-
mine its status. During this task, both the resulting status and the server’s name are
written to a new row in the $ServersTable DataTable, as shown in the next code snippet:

The GetEvent1221Info.ps1 Script 283

1
1

#--------------------

Begin Script

#--------------------

Setup ErrorLog

$ScriptName + " Ran on: " + $Date | out-file $ErrorLogName

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

#--------------------

Get Servers and Status

#--------------------

write-host "Getting Mailbox Servers" -NoNewLine

$MailboxServers = get-mailboxserver

write-host `t "[DONE]" -Foregroundcolor Green

write-host "Getting Status Info" -NoNewLine

$MailboxServers | foreach-object -Begin {$i=0;} `

-Process {&{$Ping = new-object Net.NetworkInformation.Ping;

$MBServerName = $_.Name;

trap{"Ping [ERROR]: " + $MBServerName + " $_" | out-file `

$ErrorLogName -Append; Continue};

$Result = $Ping.Send($MBServerName);

if ($Result.Status -eq "Success"){ `

[Void]$ServersTable.Rows.Add($MBServerName, "Online")} `

else{[Void]$ServersTable.Rows.Add($MBServerName, "Offline")};

$i = $i+1;

write-progress -Activity "Pinging Servers - $($MBServerName)" `

-Status "Progress:" `

-PercentComplete ($i / $MailboxServers.Count * 100)}}

write-host `t "[DONE]" -Foregroundcolor Green

Write status info to ErrorLog

$ServersTable | out-file $ErrorLogName –Append

In the next code snippet, the script generates the final report. To do this, the script uses
the DataTable Select() method to create a collection of online server objects
($OnlineServers). Then for each server in $OnlineServers object collection, the script
uses the Get-RemoteEventLog function to retrieve all of the Application event messages
from that server. For each event message retrieved with an event ID of 1221, a new row is
then added to the $EventsTable DataTable which contains formatted information from
the event message and the server’s name:

CHAPTER 11 Using PowerShell to Manage Exchange284

#--------------------

Get Event Info

#--------------------

write-host "Getting Event Info" -NoNewLine

$OnlineServers = $ServersTable.Select("Status = ‘Online’")

foreach ($Server in $OnlineServers){

&{

trap{"Event Info [Error]: " + $Server.Name + " $_" | `

out-file $ErrorLogName -Append; Continue}

$Events = Get-RemoteEventLog $Server.Name "Application"

This may take a long time depending on the number of servers

write-progress -Activity "Querying Events From - $($Server.Name)" `

-Status "This may take sometime..."

$1221Events = $Events.Entries | where {$_.EventID -eq "1221" -and `

$_.TimeWritten -ge $Date.AddDays(-$Days)}

foreach ($1221Event in $1221Events){

&{

$Message = $1221Event | select Message

$TimeWritten = $1221Event.get_timewritten()

This RegEx strips out the database name from the message

$Database = [Regex]::Match($Message, ‘"[^"\r\n]*"’)

$Database = $Database.Value.Replace(‘"‘, "")

This RegEx strips out size of the whitespace

$MB = [Regex]::Match($Message, ‘[0-9]+’)

[Void]$EventsTable.Rows.Add($Server.Name, $TimeWritten, `

$Database, $MB)

}

Last, the script exports the report information from the $EventsTable DataTable using
the Export-DataTable function:

The ProvisionExchangeUsers.ps1 Script 285

1
1

}

write-progress -Activity "Querying Events From - $($Server.Name)" `

-Status "Done" -completed $True

}

}

write-host `t "[DONE]" -Foregroundcolor Green

#--------------------

Export Data to CSV File

#--------------------

$Null = Export-DataTable $EventsTable $ExportFile

write-host

write-host "Script is now DONE!" -Foregroundcolor Green

write-host "Check the $ErrorLogName for errors." -Foregroundcolor Yellow

The ProvisionExchangeUsers.ps1 Script
With the ProvisionExchangeUsers.ps1 script, Exchange administrators can provision
mail-enabled user accounts in Exchange Server 2007 environments quickly and easily
based on information in a CSV import file. This file is structured as follows:

. The user’s first name

. The user’s last name

. The user’s e-mail alias

. The fully qualified database name

Here’s an example of the import file:

FName,LName,Alias,Database

Stu,Gronko,sgronko,SFEX01\SG1\DB1

Caelie,Hallauer,challauer,SFEX02\SG2\DB2

Duane,Putnam,dputnam,SFEX02\SG2\DB2

Essie,Fea,efea,SFEX02\SG1\DB1

Rona,Trovato,rtrovato,SFEX01\SG1\DB2

Gottfried,Leibniz,gleibniz,SFEx01\SG1\DB1

With some tweaking to the code in ProvisionExchangeUsers.ps1, the format of the CSV
import file and the information for provisioning mail-enabled user accounts can be
tailored to fit any environment. This flexibility is important to meet ever-changing
automation needs.

This script was requested by companyabc.com, a large technology company, in the process
of completing several mergers resulting in the need to provision many new mail-enabled
user accounts. Because of the number of accounts to create and the varying information
for each merger’s account-provisioning process, an automated method that could be
changed to meet different needs is the best solution. To meet the flexibility requirements,
companyabc.com’s IT department has developed the ProvisionExchangeUsers.ps1 script.

A working copy is in the Scripts\Chapter 11\ProvisionExchangeUsers folder and is
downloadable at www.samspublishing.com. Running this script requires defining three
parameters. UPNSuffix should have its argument set to the UPN (universal principal
name) suffix for new mail-enabled accounts. OUDN should have its argument set to the
distinguishedName of the OU where new mail-enabled accounts should be stored.
ImportFile should have its argument set to the name of the CSV import file containing
the list of users to create. Here’s the command to run the ProvisionExchangeUsers.ps1
script:

CHAPTER 11 Using PowerShell to Manage Exchange286

PS C:\Scripts> .\ProvisionExchangeUsers.ps1 "companyabc.com"
"OU=Accounts,DC=companyabc,DC=com" users.csv

Figures 11.6 and 11.7 shows the execution of the ProvisionExchangeUsers.ps1 script.

FIGURE 11.6 The ProvisionExchangeUsers.ps1 script being executed

www.samspublishing.com

FIGURE 11.7 The ProvisionExchangeUsers.ps1 script after being executed

The ProvisionExchangeUsers.ps1 script performs the following sequence of actions:

1. The script creates an error log named ProvisionExchangeUsers_Errors.log by using
the Out-File cmdlet. This error log gives users detailed error information.

2. The script connects to the current logon domain by using Get-CurrentDomain func-
tion. Using the object returned from this function, the script writes the domain’s
name to the PowerShell console. If this connection fails, the script halts.

3. The script verifies that the specified OU exists in the current domain by using the
Get-ADObject function. If the OU isn’t valid, the script halts.

4. The script uses the Test-Path cmdlet to verify that the import file is valid. If the file
is invalid, the script halts.

5. The script uses the Read-Host cmdlet and its AsSecureString parameter to request
the password for all new user accounts. The resulting secure string is then populated
into the $Password variable.

6. The script uses the Import-Csv cmdlet to populate the $Users variable with the CSV
import file’s contents.

7. For each user in the $Users object collection, the script uses the New-Mailbox cmdlet
to create a mail-enabled user account based on information in the CSV file and
information provided by the user. Errors generated during account creation are sent
to the script’s error log by using the Out-File cmdlet.

The first code snippet contains the header for the ProvisionExchangeUsers.ps1 script.
This header includes information about what the script does, when it was updated, and
the script’s author. Just after the header are the script’s parameters:

The ProvisionExchangeUsers.ps1 Script 287

1
1

In the next code snippet, variables that will be used later in the script are defined. In
addition, the library file LibraryGen.ps1, which contains the script usage functions, is
being dot sourced:

CHAPTER 11 Using PowerShell to Manage Exchange288

Begin gray code box

##

ProvisionExchangeUsers.ps1

Used to provision Exchange users based on CSV import file.

Created: 10/21/2006

Author: Tyson Kopczynski

##

param([string] $UPNSuffix, [string] $OUDN, [string] $ImportFile)

##

Main

##

#--------------------

Load Libraries

#--------------------

. .\LibraryGen.ps1

#--------------------

Set Config Vars

#--------------------

$ScriptName = "ProvisionExchangeUsers.ps1"

$ScriptUsage = "Used to provision Exchange users based on CSV import file."

$ScriptCommand = "$ScriptName -UPNSuffix value -OUDN value -ImportFile value"

$ScriptParams = "UPNSuffix = The new users UPN suffix.", `

"OUDN = The distinguishedName of the OU to create users in.", `

"ImportFile = The import CSV file path/filename."

$ScriptExamples = "$ScriptName ""companyabc.com""" `

+ " ""OU=Accounts,DC=companyabc,DC=com""" `

+ " ""users.csv"""

$ErrorLogName = "ProvisionExchangeUsers.log"

$Date = Date

As shown in the following code snippet, the script next checks to see if the script user
needed any usage help. If no help is needed, the script then checks to see if the
UPNSuffix, OUDN, and ImportFile parameters have been defined. If either of these

parameters has not been defined, the script then informs the script operator that the
parameter is required and shows the script usage information:

The ProvisionExchangeUsers.ps1 Script 289

1
1

#--------------------

Verify Required Parameters

#--------------------

if ($args[0] -match ‘-(\?|(h|(help)))’){

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (!$UPNSuffix){

write-host

write-host "Please specify the UPN suffix!" -Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (!$OUDN){

write-host

write-host "Please specify the OU to create users in!" `

-Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

if (!$ImportFile){

write-host

write-host "Please specify the import CSV file name!" `

-Foregroundcolor Red

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

Show-ScriptUsage $ScriptCommand $ScriptParams $ScriptExamples

Return

}

Next the Out-File cmdlet is used to create an error log and write header information to
it. Then the Get-ScriptHeader function is used to indicate to the script operator that the
automation portion of the script has started:

CHAPTER 11 Using PowerShell to Manage Exchange290

#--------------------

Begin Script

#--------------------

Setup ErrorLog

$ScriptName + " Ran on: " + $Date | out-file $ErrorLogName

write-host

Get-ScriptHeader $ScriptName $ScriptUsage

write-host

write-host "Domain Connection" –NoNewLine

The next step is for the script to verify that there is a valid domain connection. To accom-
plish this task, the script uses the Get-CurrentDomain. If a valid domain connection
doesn’t exist, the script halts and returns the script status to the operator. If a connection
does exist, the script continues execution and writes the domain name to the console, as
shown in the next code snippet:

.{

trap{write-host `t "[ERROR]" -Foregroundcolor Red;

throw write-host $_ -Foregroundcolor Red;

Break}

write-host "Domain Connection" -NoNewLine

You need to test for a domain connection

$Domain = Get-CurrentDomain

You then return the domain’s name

write-host `t $Domain.Name -Foregroundcolor Green

}

In the next code snippet, the distinguished name in the $OUDN variable is verified. To
perform the verification, the script uses Get-ADObject function. This function connects to
Active Directory and completes a search for the OU by its distinguished name. If an
object is returned from the function, then the OU is valid; if no object is returned, the
OU is considered invalid and the script halts:

Then the script verifies that the import file is a valid file using the Test-Path cmdlet:

The ProvisionExchangeUsers.ps1 Script 291

1
1

write-host "Checking OU Name" -NoNewLine

if (!(Get-ADObject "distinguishedName" $OUDN "organizationalUnit")){

write-host `t "Is not valid!" -Foregroundcolor Red

write-host

Break

}

else{

write-host `t "[OK]" -Foregroundcolor Green

}

write-host "Checking Import File" -NoNewLine

if (!(test-path $ImportFile -pathType Leaf)){

throw write-host `t "Is not a valid file!" -Foregroundcolor Red

}

else{

write-host `t "[OK]" -Foregroundcolor Green

}

Next, to collect the password from the user, the script uses the Read-Host cmdlet with the
AsSecureString switch, as shown in the next code snippet:

#--------------------

Get Password

#--------------------

write-host

$Password = read-host "Please enter password" –AsSecureString

Last, the script provisions the new user accounts using the New-Mailbox cmdlet, informa-
tion from the import file, and information provided by the script user:

Summary
In this chapter, you were introduced to how PowerShell is used to manage Exchange
Server 2007 through not only a GUI using the EMC, but also the command line using the
EMS. Exchange Server 2007 is the first of what will be many applications that use
PowerShell in this fashion. To accomplish this feat, Exchange Server 2007 makes use of
PowerShell’s ability to be extended through the use of snap-ins. By using a snap-in, more
cmdlets are made available to a PowerShell user, thus further increasing their ability to
manage an Exchange organization.

The scripts that were reviewed in this chapter served as a good demonstration of what can
be accomplished using the Exchange Server 2007 snap-in. Thanks to these examples, you
should now have an understanding about how to use PowerShell to gather Exchange

CHAPTER 11 Using PowerShell to Manage Exchange292

#--------------------

Create mailboxes

#--------------------

write-host

write-progress -Activity "Adding Users" -Status "Stand by..."

$Users = import-csv $ImportFile

$Users | foreach-object -Begin {$i=0;} `

-Process {$FName = $_.FName;

$LName = $_.LName;

$Alias = $_.Alias;

$Database = $_.Database;

$UPN = $Alias + "@" + $UPNSuffix;

$Name = $FName + " " + $LName;

$Null = new-mailbox -Name $Name -Database $Database `

-OrganizationalUnit $OUDN -UserPrincipalName $UPN `

-Password $Password -ResetPasswordOnNextLogon $True `

-Alias $Alias -DisplayName $Name -FirstName $FName `

-LastName $LName -ErrorVariable Err -ErrorAction `

SilentlyContinue;

if ($Err.Count -ne 0){ `

"Add User [ERROR]: " + $Alias + " " + $Err | `

out-file $ErrorLogName -Append};

$i = $i+1;

write-progress -Activity "Adding Users" -Status "Progress:" `

-PercentComplete ($i / $Users.Count * 100)}

write-host "Script is now DONE!" -Foregroundcolor Green

write-host "Check the $ErrorLogName for errors." -Foregroundcolor Yellow

database size information, calculate a database’s whitespace, and quickly provision mail-
enabled users. But, the limits to what can be accomplished around Exchange manage-
ment don’t stop there. Rather, as it has been stressed throughout this book, the limits to
what can be done with PowerShell should in many respects only be bounded by your
own scripting talent and imagination.

Opening your mind to the concept of what scripting can accomplish is by far the first
step in understanding what PowerShell can do for you. True, you need to understand
what PowerShell is before you can tackle grander and more elaborate automation needs.
However, by taking that first step, you have started down a journey of discovery that will
ultimately lead to using PowerShell as the PowerShell development team envisioned.

Aspects of this book should have assisted you with starting this journey in two areas.
First, the book allowed you to gain an understanding of what PowerShell is and how to
use it. However, background information and feature explanations were kept to only
several chapters by focusing on topics most important to gaining a working understand-
ing of PowerShell. Second, this book approached PowerShell usage from an angle not
normally seen. That angle was to not try and explain every single nuance of PowerShell’s
features and language syntax. Instead, this book zeroed in on how to apply PowerShell.

To show the application of PowerShell, there were a number of chapters that showed
comparisons between Windows scripting and PowerShell. In these comparisons, both
command-line examples and working scripts were analyzed using VBScript and
PowerShell. By doing this, the goal was to allow you to relate your existing Windows
scripting knowledge to new PowerShell concepts. The last two chapters were dedicated to
showing you how PowerShell might be used to meet various automation needs and how
PowerShell is used to manage Exchange Server 2007. Again like the previous chapters, the
focus of these chapters was on the application of PowerShell.

Now, having reached the end of this book, your journey continues. PowerShell is one of
the more amazing products to come out of Microsoft in a long time. Jeffrey Snover and
the rest of the PowerShell team should be given a lot of credit for seeing a need and then
developing PowerShell to meet that need. In time, as more and more Microsoft and third-
party applications adopt using PowerShell, the scope to what can be accomplished will
only further materialize. As a result, the depth to what you will be able to accomplish
using PowerShell will only continue to grow.

Summary 293

1
1

This page intentionally left blank This page intentionally left blank

Index

Symbols

` (backtick), 49-50

{ } (braces), 42

& call operator, 28, 53, 232

. (dot) call operator, 153

:: (double colon), 62

$ prefix, 41

./ prefix

opening files, 29

running scripts, 91

.\ prefix

opening files, 29

running scripts, 91

[] (square brackets), 60-61

A
abstraction layers (ADSI), 206

Access Control Entry (ACE), 134-135

access rules, building, 131

accessing

drives, 74-77, 126

file information, 127

folder information, 126-127

PowerShell, 21-22

ACE (Access Control Entry), 134-135

Active Directory Services Interfaces. See ADSI

ActiveX Data Objects (ADO), 207

Add-ACE function, 134-135

Add-Member cmdlet, 71

Add-PSSnapin cmdlet, 264

ADM (Group Policy Administrative
Template), 89-91

administrator passwords, changing,
246-256, 258

ADO (ActiveX Data Objects), 207

ADSI (Active Directory Services
Interfaces), 205-206

group membership scripts, 212-232

objects

creating, 210-211

retrieving object information, 209-210

in PowerShell, 208

in WSH, 207-208

[ADSI] type accelerator, 208

aliases, 45

cmdlets for, 47-48

creating, 10

Definition property, 40

naming standards and, 114

persistent aliases, 48-49

All Users host-specific profile, 84-85

All Users profile, 84

AllSigned execution policy, 86, 118

ampersand (&) call operator, 28, 53, 232

applications

Definition property, 39

shells versus, 7

arguments, 23

assemblies, loading, 241

auto-completion, 24-26

B
backtick (`), 49-50

Bash shell, 15

best practices

script design, 110-117

script development, 107-110

script security, 117-118

standardization, 118-120

blocked information, viewing, 71

Bourne Again Shell (Bash), 15

Bourne shell, 14

braces ({ }), 42

built-in variables, 42-45

C
C shell, 14

CA (certificate authority), 86

defined, 94

signed certificates, obtaining from, 97-99

calling PowerShell from other shells, 30-32

certificate authority. See CA

certificate store

defined, 100

Trusted Publishers certificate
store, 103-105

Trusted Root Certificate Authorities
certificate store, 103

Untrusted Certificates certificate store, 105

certificates. See digital certificates

chaining commands, 9

ChangeLocalAdminPassword.ps1
script, 246-258

classes, static, 62

Active Directory Services Interfaces296

Clear-Inherit function, 133, 154

Clear-SD function, 133-134

CLI (command-line interface), 22-24

command types

cmdlets, 26

native commands, 29-30

script commands, 28-29

shell function commands, 26-28

GUI shells versus, 8

navigating, 24-26

shells as, 7

cmdlets. See also names of specific cmdlets

aliases, 45-49

common parameters, 34-35

defined, 26

help information for, 33-34

listing, 38-40

naming conventions, 33

ubiquitous parameters, error
handling, 80-81

code signing, 86

best practices, 117

defined, 94-95

digital certificates

CA signed certificates, obtaining, 97-99

importing, 99-100

obtaining, 95-96

self-signed certificates, creating, 96-97

digital signatures, verifying, 101-102

importance of, 93

PowerShell scripts, 100-101

trust, establishing, 102-105

command chaining, 9

command shortcuts. See aliases

command-line interface. See CLI

How can we make this index more useful? Email us at indexes@samspublishing.com

commands

formats of, 23

storing in scripts, 53-56

types of

cmdlets, 26

native commands, 29-30

script commands, 28-29

shell function commands, 26-28

comments, 111

common parameters, list of, 34-35

compression function, 94

configuration information

hard-coding, 111

location of, 110-111

variables in, 112

configuring PowerShell console, 170

Confirm parameter, 115-117

confirmation, prompts for, 251

connections

remote PowerShell connections, 91

WMI connection methods, 183-184

console files for persistent snap-ins, 265

converting VBScript to PowerShell

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

Copy-Item cmdlet, 152

CreateRegKey function (VBScript), 165-166

CreateRegValue function (VBScript), 166-167

cryptography, public key, 94

current user’s host-specific profile, 85

current user’s profile, 85

custom object types, creating, 71

custom object types, creating 297

D
data store providers, 72-74

drives, accessing, 74-77

drives, mounting, 77-78

data types, ETS (Extended Type System), 70-72

databases, mailbox databases

size of, determining, 266-275

whitespace, determining, 275-285

DCL (Digital Command Language), 15

defining variables, 41-42

Definition property

for aliases, 40

for applications, 39

for functions, 40

for scripts, 40

DeleteRegKey function (VBScript), 168

DeleteRegValue function (VBScript), 168-169

delimiters, 58

deploying PSShell.ps1 script, 245-246

designing scripts. See script design

-detailed parameter (Get-Help cmdlet), 38

development life cycle model, 108-109

Dictionary object, 214

digital certificates

CA signed certificates, obtaining, 97-99

defined, 94

importing, 99-100

obtaining, 95-96

self-signed certificates, creating, 96-97

Digital Command Language (DCL), 15

digital signatures. See also code signing

defined, 94

verifying, 101-102

dir command, 23

directories

disk usage, determining, 10-14

listing, 8-10

disk usage of directories, determining, 10-14

distribution of signed code, 102-105

documentation for PowerShell, 91

dollar sign ($) prefix, 41

DOSShell, 15-16

dot (.) call operator, 153

dot sourcing

script files, 169

scripts, 52

double colon (::), 62

downloading

.NET Framework 2.0, 19

PowerShell, 20

Drive object, 126

drives

accessing, 74-77, 126

defined, 74

mounting, 77-78

E
EMC (Exchange Management Console), 262

EMS (Exchange Management Shell),
261-262, 265-266

enterprise code, establishing trust, 105

error handling

with ErrorAction and ErrorVariable
parameters, 80-81

throw keyword, 83-84

trapping errors, 81-83

$Error variable, 78-79

ErrorAction parameter, 80-81

ErrorRecord object, 78-80

data store providers298

errors

$Error variable, 78-79

ErrorRecord properties, 79-80

nonterminating errors, 78

handling, 80-81

trapping, 81-83

terminating errors, 78

throw keyword, 83-84

trapping, 81-83

ErrorVariable parameter, 80-81

escape sequences, 49-50

ETS (Extended Type System), 70-72

Event ID 1221 messages (Exchange
2007), 275-285

Exchange 2007

scripts

GetDatabaseSizeReport.ps1, 266-275

GetEvent1221Info.ps1, 275-285

ProvisionExchangeUsers.ps1, 285-291

task automation, 261-262

Exchange Management Console (EMC), 262

Exchange Management Shell (EMS),
261-262, 265-266

ExecuteGlobal statement (VBScript), 162

execution policies

AllSigned, 86

AllSigned setting, 118

RemoteSigned, 87-88

RemoteSigned setting, 118

Restricted, 86

setting, 88-91

Unrestricted, 88

Unrestricted setting, 93, 118

explicit scope indicators, 51

explicitly defined permissions, 154

Export-Alias cmdlet, 48

Export-Console cmdlet, 265

How can we make this index more useful? Email us at indexes@samspublishing.com

Export-CSV cmdlet, 232

Export-DataTable function, 269-270,
275, 279, 285

expressions, 40-41

Extended Type System (ETS), 70-72

extending object types, 71

F
File object, 127

file system management. See also permissions
management

VBScript, converting to PowerShell

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

WSH versus PowerShell, 125-127

files, accessing information, 127

FileSystem provider, 126

FileSystemObject object, 125

fingerprint, 94

Folder object, 126

folders, accessing information, 126-127

Format-List cmdlet, 210

Format-Table cmdlet, 275

FormatNumber function, 194

FSO object model, 125

Drive object, 126

File object, 127

FileSystemObject object, 125

Folder object, 126

-full parameter (Get-Help cmdlet), 38

functions. See also specific functions

defined, 26-28

Definition property, 40

for permissions management, 132-135

in SubInACL utility, 128

functions 299

G
Get-ACL cmdlet, 131

Get-ADObject function, 227, 230, 254, 290

Get-Alias cmdlet, 45

Get-AuthenticodeSignature cmdlet, 101-102

Get-ChildItem cmdlet, 75

Get-Command cmdlet, 34, 38-40

Get-Content cmdlet, 77

Get-CurrentDomain function, 227-229,
254, 290

Get-ExecutionPolicy cmdlet, 88

Get-Help cmdlet, 35-38

Get-Item cmdlet, 126

Get-ItemProperty cmdlet, 75, 159

Get-MailboxDatabase cmdlet, 274

Get-MailboxServer cmdlet, 273, 283

Get-Member cmdlet, 62-71

get-process cmdlet, 23-24

Get-PSDrive cmdlet, 74, 126

Get-PSProvider cmdlet, 73

Get-PSSnapin cmdlet, 263-264

Get-RegValue function, 171-172, 178

Get-RemoteEventLog function, 279, 284

Get-ScriptHeader function, 224-229, 254,
272, 282, 290

Get-WmiObject cmdlet, 185-187

GetDatabaseSizeReport.ps1 script, 266-275

GetEvent1221Info.ps1 script, 275-285

global scope, 50-51

GPO (Group Policy Object)

setting execution policies, 89-91

for shell replacement, 237-238

graphical user interface shells. See GUI shells

group membership scripts, converting VBScript
to PowerShell

IsGroupMember.ps1 script, 222-232

IsGroupMember.wsf script, 212-220

Group Policy Administrative Template
(ADM), 89-91

Group Policy Object (GPO)

setting execution policies, 89-91

for shell replacement, 237-238

GUI shells, 7

CLI shells versus, 8

Windows as, 15

H
handling errors. See error handling

hard-coding configuration information, 111

help information

for cmdlets, 33-34

Get-Help cmdlet, 35-38

hiding PowerShell console, 239-240

history

of PowerShell, 16-17

of shells, 14-17

hosting applications, 84

I
ICMP pings, 196

implicitly defined permissions, 154

Import-Alias cmdlet, 48

Import-Csv cmdlet, 151

importing digital certificates, 99-100

including script files in VBScript, 162-163

installing PowerShell, 19-21

instances of .NET objects, creating, 60

instructions including with scripts, 112

interface. See CLI

Get-ACL cmdlet300

interrogating objects, 62-70

IsGroupMember.ps1 script, 222-232

IsGroupMember.wsf script, 212-220

J-K
Join-Path cmdlet, 152

keyboard editing features, 24

kiosk shells

overview, 8

PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows
Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

Korn shell, 15

L
language references for PowerShell, 91

launching PowerShell, 21-22

least privileges, principle of, 118

LibraryRegistry.ps1 script, 169-181

LibraryRegistry.vbs script, 162-169

listing

cmdlets, 38-40

directories, 8-10

loading

assemblies, 241

EMS snap-in, 265-266

snap-ins, 264

local administrator password,
changing, 246-258

local scope, 51

How can we make this index more useful? Email us at indexes@samspublishing.com

M
mailbox databases

size of, determining, 266-275

whitespace, determining, 275-285

makecert utility, 96-97

ManagementClass class, 189

ManagementObject class, 189

ManagementObjectSearcher class, 190

message digest, 94

methods

defined, 25

static methods, 62

moniker strings, 183

monitoring virtual machines

MonitorMSVS.ps1 script, 197-202

MonitorMSVS.wsf script, 191-197

MonitorMSVS.ps1 script, 197-202

MonitorMSVS.wsf script, 191-197

mounting drives, 77-78

N
naming conventions, 114

cmdlets, 33

variables, 41-42

native commands, 29-30

navigating CLI, 24-26

.NET Framework

downloading, 19

instances of objects, creating, 60

references in square brackets, 60-61

reflection, 62-70

static classes/methods, 62

networking equipment, shells in, 8

New-Alias cmdlet, 48

New-Alias cmdlet 301

New-Mailbox cmdlet, 291

New-Object cmdlet, 60, 241, 254

New-PromptYesNo function, 250-252

New-PSDrive cmdlet, 77

New-RandomPassword function, 250, 255

nonterminating errors, 78

handling, 80-81

trapping, 81-83

O
object information, retrieving with

ADSI, 209-210

object-based environment

ETS (Extended Type System), 70-72

pipeline in, 59-60

text-based environment versus, 57-58

objects, creating with ADSI, 210-211

one-way hash, 94

opening files, 29

Out-File cmdlet, 254, 272, 282, 290

P
parameters

common parameters, list of, 34-35

defined, 23

determining, 33-34

ubiquitous parameters, error
handling, 80-81

validity checking on, 113

passwords, local administrator
password, 246-258

permissions management

VBScript, converting to PowerShell

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

WSH versus PowerShell, 128-135

persistent aliases, 48-49

persistent snap-ins, 265

Ping function, 196

pipeline. See also command chaining

defined, 8

in object-based environment, 59-60

in text-based environment, 58-59

PKI (public key infrastructure), 95-96

PowerShell

ADSI in, 208

calling from other shells, 30, 32

console, hiding, 239-240

converting VBScript

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

downloading, 20

file system management, 125-127

history of, 16-17

installing, 19-21

language references, 91

launching, 21-22

permissions management, 128-135

Registry management, 157-161

scripts

signing, 100-101

trust, establishing, 102-105

system requirements, 19

WMI in

Get-WmiObject cmdlet, 185-187

type accelerators, 187-190

New-Mailbox cmdlet302

preference settings, 44-45, 90

private scope, 52-53

production environment, avoiding script
development in, 109

professional standards for scripts, 110

profiles

All Users host-specific profile, 84-85

All Users profile, 84

configuring PowerShell console, 170

current user’s host-specific profile, 85

current user’s profile, 85

defined, 84

for persistent snap-ins, 265

projects, scripts as, 108

prompts for confirmation, 251

properties

defined, 25

ErrorRecord object, 79-80

providers, 72-74

ADSI, 205

drives

accessing, 74-77

mounting, 77-78

ProvisionExchangeUsers.ps1 script, 285-291

provisioning user accounts (Exchange
2007), 285-291

ProvisionWebFolders.ps1 script, 146-154

ProvisionWebFolders.wsf script, 136-143

.ps1 extension, 53

PSBase, 71

pseudocode, 109

PSObject, 70-72

PSShell.exe, 239-240

PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows
Forms, 240-245

How can we make this index more useful? Email us at indexes@samspublishing.com

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

public code, establishing trust, 105

public key cryptography, 94

public key infrastructure (PKI), 95-96

PVK Digital Certificate Files Importer, 99-100

R
Read-Host cmdlet, 255, 291

readability, 114

ReadRegValue function (VBScript), 163-165

references, .NET Framework, 60-61

reflection, 62, 64-70

RegDelete method (WSH), 161

registering snap-ins, 263

Registry management

shell replacement, 237

VBScript, converting to PowerShell, 161

LibraryRegistry.ps1 script, 169-181

LibraryRegistry.vbs script, 162-169

WSH versus PowerShell, 157-161

Registry provider, 158

RegRead method (WSH), 159

RegWrite method (WSH), 160

remote PowerShell connections, 91

RemoteSigned execution policy, 54, 87-88, 118

Remove-ACE function, 135

Remove-ItemProperty cmdlet, 161

Remove-PSDrive cmdlet, 78

Remove-RegKey function, 175-176, 181

Remove-RegValue function, 176-177, 180

replacing Windows Explorer, 236-238

required parameters, validity checking on, 113

requirements, gathering, 109

requirements, gathering 303

Restricted execution policy, 86

retrieving object information with
ADSI, 209-210

reusability, 114

rights, principle of least privileges, 118

running scripts, 54, 91

runspaces, 242-243

S
scope

defined, 50

global scope, 50-51

local scope, 51

private scope, 52-53

script scope, 51-52

trapping errors, 83

script commands, 28-29

script files

dot sourcing, 169

including in VBScript, 162-163

scripts

ChangeLocalAdminPassword.ps1, 246-258

creating, 53-56

Definition property, 40

design, 110-117

development, 107-110

dot sourcing, 52

for Exchange 2007

GetDatabaseSizeReport.ps1, 266-275

GetEvent1221Info.ps1, 275-285

ProvisionExchangeUsers.ps1, 285-291

including instructions with, 112

professional standards for, 110

as projects, 108

PSShell.ps1, 235-236

deploying, 245-246

desktop generation with Windows
Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

purpose of, 14

running, 54, 91

script files

dot sourcing, 169

including in VBScript, 162-163

scope, 51-52

security. See security

software development versus, 107

testing, 110

SDDL (Security Descriptor Definition
Language), 134

secure kiosk shells, PSShell.ps1 script, 235-236

deploying, 245-246

desktop generation with Windows
Forms, 240-245

PSShell.exe, 239-240

Windows Shell Replacement, 236-238

security

best practices, 117-118

code signing. See code signing

execution policies

AllSigned, 86

RemoteSigned, 87-88

Restricted, 86

setting, 88-91

Unrestricted, 88

remote PowerShell connections, 91

scripts, running, 91

WSH, 85

Security Descriptor Definition Language
(SDDL), 134

Restricted execution policy304

Security Descriptor String Format, 134

selecting development life cycle
model, 108-109

self-signed certificates, creating, 96-97

Set-ACL cmdlet, 131

Set-Alias cmdlet, 48

Set-Aliases cmdlet, 48

Set-AuthenticodeSignature cmdlet, 100-101

Set-ChoiceMessage function, 250-252

Set-ExecutionPolicy cmdlet, 88

Set-ItemProperty cmdlet, 160

Set-Location cmdlet, 74

Set-Owner function, 133, 152-153

Set-RegKey function, 173

Set-RegValue function, 173-175

shell function commands, 26-28. See
also functions

shell replacement, 236-238

shell scripting

purpose of, 14

usage example, 10-14

shells

applications versus, 7

calling PowerShell from, 30-32

defined, 7-8

history of, 14-17

usage example, 8-10

Show-ScriptUsage function, 224-228

signature blocks, 101

signatures. See digital signatures

signing code. See code signing

size of mailbox databases,
determining, 266-275

snap-ins

confirming availability of, 264

defined, 262

EMS snap-in, loading, 265-266

How can we make this index more useful? Email us at indexes@samspublishing.com

loading, 264

persistent snap-ins, 265

registering, 263

verifying, 263

software development, scripting versus, 107

square brackets ([]), 60-61

standardization, 118-120

static classes, 62

static methods, 62

status information, providing, 115

StdRegProv class (WMI), 163

storing

commands in scripts, 53-56

expressions in variables, 41

SubInACL utility, 128, 141-142

system requirements of PowerShell, 19

T
terminating errors, 78

throw keyword, 83-84

trapping, 81-83

Test-Path cmdlet, 150, 230, 291

testing scripts, 110

text-based environment

object-based environment versus, 57-58

pipeline in, 58-59

$This variable, 72

throw keyword, 83-84

trapping errors, 81-83

trust, establishing, 102-105

Trusted Publishers certificate store, 103-105

Trusted Root Certification Authorities
certificate store, 103

Trusted Root Certification Authorities certificate store 305

type accelerators, 187-188

list of, 188-189

[WMIClass], 189

[WMISearcher], 190

[WMI], 189

types, ETS (Extended Type System), 70-72

U
ubiquitous parameters, error handling, 80-81

Unrestricted execution policy, 88, 93, 118

Untrusted Certificates certificate store, 105

Update-TypeData cmdlet, 71

user accounts (Exchange 2007),
provisioning, 285-291

V
validity checking on required parameters, 113

variables

built-in variables, 42-45

in configuration information, 112

defining, 41-42

definition of, 41

naming conventions, 41-42

storing expressions in, 41

VBScript, converting to PowerShell

file system management, 136-154

group membership scripts, 212-232

Registry management, 161-181

virtual machine monitoring, 191-202

verifying

digital signatures, 101-102

snap-ins, 263

viewing blocked information, 71

virtual machines, monitoring

MonitorMSVS.ps1 script, 197-202

MonitorMSVS.wsf script, 191-197

W-X-Y-Z
WhatIf parameter, 115-117

whitespace in mailbox databases,
determining, 275-285

whitespace delimiters, 59

Windows, 15

Windows Explorer, replacing, 236-238

Windows Forms, 240-245

Windows Management Instrumentation.
See WMI

Windows Script Host. See WSH

Windows Shell Replacement, 236-238

WMI (Windows Management Instrumentation)

connection methods, 183-184

in PowerShell

Get-WmiObject cmdlet, 185-187

type accelerators, 187-190

in WSH, 184-185

[WMIClass] type accelerator, 189

[WMISearcher] type accelerator, 190

[WMI] type accelerator, 189

Write-Host cmdlet, 148

WSH (Windows Script Host), 15-16

ADSI in, 207-208

file system management 125-127

permissions management, 128-135

Registry management, 157-161

security issues, 85

WMI in, 184-185

WshShell object, 157

xcopy utility, 140-141

type accelerators306

	Windows® PowerShell Unleashed
	Table of Contents
	Introduction
	Part I: Introduction to PowerShell
	1 Introduction to Shells and PowerShell
	What Is a Shell?
	A Shell History
	Enter PowerShell
	Summary

	2 PowerShell Basics
	Introduction
	Getting Started
	Accessing PowerShell
	Understanding the Command-Line Interface (CLI)
	Understanding cmdlets
	Useful cmdlets
	Expressions
	Understanding Variables
	Understanding Aliases
	Escape Sequences
	Understanding Scopes
	Your First Script
	Summary

	3 PowerShell: A More In-Depth Look
	Introduction
	Object Based
	Understanding Providers
	Understanding Errors
	Error Handling
	PowerShell Profiles
	Understanding Security
	The PowerShell Language
	Summary

	4 Code Signing
	Introduction
	What Is Code Signing?
	Obtaining a Code-Signing Certificate
	Signing PowerShell Scripts
	Verifying Digital Signatures
	Signed Code Distribution
	Summary

	5 PowerShell Scripting Best Practices
	Introduction
	Script Development
	Script Design
	Script Security
	Standards for Scripting
	Summary

	Part II: Translating Your Existing Knowledge into PowerShell
	6 PowerShell and the File System
	Introduction
	File System Management in WSH and PowerShell
	Working with Permissions
	From VBScript to PowerShell
	Summary

	7 PowerShell and the Registry
	Introduction
	Registry Management in WSH and PowerShell
	From VBScript to PowerShell
	Summary

	8 PowerShell and WMI
	Introduction
	Comparing WMI Usage Between WSH and PowerShell
	From VBScript to PowerShell
	Summary

	9 PowerShell and Active Directory
	Introduction
	Comparing ADSI Usage Between WSH and PowerShell
	From VBScript to PowerShell
	Summary

	Part III: Using PowerShell to Meet Your Automation Needs
	10 Using PowerShell in the Real-World
	The PSShell.ps1 Script
	The ChangeLocalAdminPassword.ps1 Script
	Summary

	11 Using PowerShell to Manage Exchange
	Introduction
	The Exchange ManagementShell (EMS)
	The GetDatabaseSizeReport.ps1 Script
	The GetEvent1221Info.ps1 Script
	The ProvisionExchangeUsers.ps1 Script
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W-X-Y-Z

